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Abstract

We describe methods for assessing estimated Dynamic Stochastic Gen-
eral Equilibrium (DSGE) models. One involves the computation of al-
ternative impulse responses from models constrained to have an iden-
tical likelihood and the same contemporaneous signs as responses in the
DSGE model. Others ask how well the model matches the data generating
process; whether there is weak identification; the consequences of includ-
ing measurement error with growth rates of non-stationary variables; and
whether the model can reproduce features of the data that involve combi-
nations of moments. The methods are applied to a large-scale small-open
economy DSGE model, typical of those used at policy institutions.

1 Introduction

Estimated Dynamic Stochastic General Equilibrium (DSGE) models today are
commonplace both in academia and in policy institutions, such as central banks.
An important feature of these models is the definition of some shocks identified
from a structural perspective. There are then standard ways in which these
models are used. These include the production of impulse response functions
for examining policy scenarios and also a decomposition of the observed variables
used in estimation into the contributions from each of the shocks. Arguably,
there is often much less attention paid to assessing the output of these DSGE
models post-estimation, particularly from the perspective of using them for
policy analysis. This paper presents a collection of methods that can be used
to do so.
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Throughout the paper we focus our analysis on a multi-sector model of the
Australian economy (MSM in this paper) which has been developed by Rees
et al. (2016) at the Reserve Bank of Australia. Many of the issues we will
address are common to a large number of DSGE models e.g. Andrle (2014)
observes that many of the models he has seen feature one of the problems we
will observe, namely that empirical shocks are not uncorrelated, even though
this was assumed in estimation. Apart from its Australian context, what made
the MSM an attractive vehicle for analysis is that it is a fairly large model,
and that poses questions that don’t arise to the same degree for many of the
smaller New Keynesian models one sees in use in academia, largely because they
feature only one sector. Moreover, the data and the code used to estimate and
simulate it were available. Fundamentally, though we use the MSM to illustrate
our general points about DSGE models.

The MSM features seventeen shocks and three production sectors: (i) non-
traded commodities and services, (ii) traded non-resource commodities and ser-
vices, and, (iii) traded resources. It has a unit root process for the log of tech-
nology so that some of the variables in the model follow integrated processes
that are also co-integrated. What makes the model innovative is the presence of
three sectors, and in many ways it can be seen as an extension of the dependent
economy model whose origins are strongly Australian - see Metaxas and Weber
(2016). A key element in it is a real exchange rate, but it also allows for nominal
rigidities, so it is potentially a very useful model for policy analysis. Data on
seventeen variables were used to estimate the parameters of MSM. In addition
to those commonly used for small-open economy DSGE models, such as GDP
growth, inflation, the real exchange rate, and the policy rate, there are a variety
of others reflecting sector-specific variables. The foreign sector was captured
through three core variables - GDP growth, inflation and a policy rate.1 An
extra variable in MSM that is external to the Australian economy is a resources
price. The foreign variables (and resource prices) are strictly exogenous to the
Australian economy and so the model is of a small dependent economy. Estima-
tion was performed with Bayesian methods, requiring some prior distributions
for the DSGE model parameters to be stated. After estimation some experi-
ments were done with the model in order to assess features such as the impact
of monetary and risk premium shocks.

There are many issues raised when assessing output from any DSGE model
such as MSM.2 Section 2 looks at one of these. It stems from the fact that

1Throughout this paper we try to use the same notation as in the MSM, with ∗ denoting
the foreign sector; for example p and p∗ would be the logs of the domestic and foreign price
levels respectively. The complete list of variables whose data are used in estimation includes
the growth rates in GDP (∆yva), consumption (∆c), investment (∆i), public demand (∆g),
resource exports (∆zx), non-resource exports (∆yxm), non-tradeable value added ∆y

va
n , non-

resource tradeable value added (∆yvam ), resources valued added (∆yvaz ), domestic inflation
πt, non-tradeable inflation (πn), the Australian cash rate (r) and the change in the nominal
exchange rate (∆s). There are also data on growth in foreign GDP (∆y∗), inflation (π∗), a
short term interest rate (r∗) and resource price inflation (∆p∗z).

2The approaches adopted here are not meant to be exhaustive - see, for example,
Schorfheide (2013) for an earlier discussion. The methods we advance can be thought of
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shocks are a pivotal feature of DSGE models and that one can recombine them
to produce different different impulse responses and yet have the same fit as the
estimated DSGE model.3 When using the latter for policy scenarios we would
presumably want to know how big the range of alternative impulse responses
is. We find such alternative models, after imposing two restrictions. First, the
alternative model must fit the data equally well as the DSGE model. Second,
the impulse responses to the named shocks from any alternative model must
have the same contemporaneous signs as those given by the estimated DSGE
model, in this case the MSM.4 To perform this task we utilize the fact that
a DSGE model solves for a Vector Autoregression in all its variables, and this
can be written in such a way as to highlight its structural shocks. We refer to
the resulting representation as a semi-structural VAR (SSVAR) model. Because
many DSGE models, including MSM, imply that there is co-integration between
certain variables, Section 3 also considers different representations of the basic
SSVAR from MSM, moving towards a semi-structural Vector Error Correction.
Such a representation is useful for a number of analyses of output from DSGE
models such as MSM.

Now a model can be defined as a representation of a system that allows an
investigation of the properties of that system. A model is built up from what
are thought to be key variables in the system, and the quantitative relationships
between then are captured by assigning some values to parameters involved
in these. Hence a different set of parameter values implies a different model,
although they may not imply very different properties for the system. Think of a
demand/supply system. The model and implied system properties are different
if there is a very low supply elasticity to when there is a high one, and the
model differences will be evident from a graph. Hence, multiple models with
the same generating process can arise if there are many values for the estimated
parameters which produce the same likelihood. If so, then there would be
many different values for impulse responses. This would be an example of a
failure of structural identification of the DSGE model parameters, and so it
is important to check for such problems. Basically, one wants to check the
shape of the likelihood (or whatever function is being optimized to produce
parameter estimates). Some identification measures are now in Dynare and
these were set out in Ratto and Iskrev (2010). In Section 4 we discuss these
measures and apply them to the MSM model. Another approach,described in

as complements to existing techniques. A lot of the previous literature focusses on judging
either whether the DSGE model fits the data as well as alternatives such as VARs or whether
it will produce good predictions. Although we do have some suggestions for judging the qual-
ity of fit they are based on examining measures that have some particular interest e.g. on
whether recessions are more likely to be predicted by the model rather than are present in the
data.

3Although we focus on DSGE models what we propose can also be used for many other
structural macroeconomic models. What is distinctive about DSGE models however is their
concentration upon shocks.

4Of course if one insisted that the impulse responses must have the same quantitative values
as those from the DSGE model then there should be no alternative models if the model is
identified.
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Koop et al. (2013), uses a convergence rate indicator to flag parameters that
are possibly only weakly identified. This involves simulation of the estimated
DSGE model and, in Section 4, we suggest another way that the simulated data
can be fruitfully used to judge identification issues. It appears that some of the
crucial parameters in the MSM, namely the slopes of Phillips curves, may be
weakly identified.

Finally, we have the fundamental question of how the generating process of
the selected DSGE model (the model generating process MGP) matches the data
generating process (DGP). That there can be a gap between these comes from
the fact that some of the DSGE model variables may be unobserved i.e. do not
have an exact analogue in the data. In that situation, although the MGP for
all variables may be a VAR, this may not be true of the DGP for the observed
variables. Section 5 looks at this in a number of stages. Given a distinction
between the data and the model generated variables, it seems natural to ask how
one might bridge these? In many DSGE models, including MSM, reconciling
the model and data is often partially done by allowing for “measurement error"
in the data. Section 5.1 examines how productive this approach is, pointing out
the difficulties with it when data is measured by growth rates in I(1) variables,
as is done in MSM.

Section 5.2 moves on to ask whether dropping the unobservables means that
the form of the MGP for the complete MSM differs from the format of the
generating process for a reduced number of variables. Using impulse responses
to measure the correspondence between these two generating mechanisms we
find that the SSVAR(2) implied by the MSM is reasonably well approximated
by an SSVAR(2) in just observables. In Section 5.3 we ask how well certain
features of the MGP match the DGP of the observables. This is a quantitative
test. Simple statistics such as moments can be informative about this question,
and more complex ones, such as business cycle outcomes, can be important for
conceptualizing what any failure to match the data means. Finally, at various
times we utilize the different representations of Section 3 in order to shed light
on a failure of data and the MSM model moments to match.

2 Examining the Model Generating Process of
MSM

2.1 Generating a Range of Models Compatible with a
Given Model Generating Process

Let the DSGE model have parameters θ. Then its variables will be generated
using the model with these parameters set to some estimated values θ∗. We
will call this the Model Generating Process (MGP). Suppose there are other
models that have the same generating process as that found with θ∗, i.e. the
MGP, but with different impulse responses to shocks. In that case, the location
of the responses of the DSGE model in this range is a useful indicator of the
uncertainty surrounding such responses when used for policy analysis. This is
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different to the statistical uncertainty coming from the fact that the parameters
are estimated. Rather it is model uncertainty, reflecting the fact that there are
other models compatible with the MGP but which produce different reactions to
shocks.5 One way to think about the difference is to suppose we have an infinite
amount of data. Then the statistical uncertainty would disappear but the model
uncertainty would remain. The focus of this sub-section is to demonstrate how
it is possible to quantify the extent of the latter.6 In particular, we show how
to produce such a range of models and define what we mean by compatibility.

Variables in DSGE models can be taken to be I(0), perhaps after some
transformation. The most common transformation needed is to convert I(1)
variables into I(0) variables by de-trending them with the level of technology.
We will focus on this later but, for now, assume that the zt in a DSGE model
are all I(0) variables. In most instances the DSGE model has the structural
equations7

A0zt = CEt(zt+1) +A1zt−1 +Hut, (1)

where ut are shocks possibly following a VAR(1), ut = Φut−1 + εt, and εt is a
vector of white noise structural shocks with covariance matrix Σ that is diagonal.
The latter are generally referred to as innovations to the structural shocks and
we will use that terminology here. A0, C,A1 and H are matrices which are
functions of θ. This system can then be solved for zt by using (for example) the
method of undetermined coefficients, and it produces a solution

zt = Bzt−1 +Gut.

Binder and Pesaran (1995) present the two relevant conditions for this solution
to exist, namely a rank condition and the Blanchard-Kahn stability conditions.
Hence

zt = Bzt−1 +G(Φut−1 + εt)

= Bzt−1 +GΦ(G+(zt−1 −Bzt−2)) +Gεt

= (B +GΦG+)zt−1 −GΦG+Bzt−2 +Gεt

= B1zt−1 +B2zt−2 + et,

where et ≡ Gεt are the VAR error terms, G+ is the (possibly generalised)
inverse of G, B1 ≡ (B + GΦG+) and B2 ≡ −GΦG+B. This is a VAR(2) in
which the VAR errors have been written as functions of the structural shocks
εt. For convenience we will refer to this as a semi-structural VAR (SSVAR). As
we will see later the MSM can be expressed in this form.

5 It is important to note that we are not discussing alternative models that have a different
set of variables in them compared to the DSGE model. A lot of work on specification errors
in DSGE models involves expanding the set of variables used.

6The presentation of the solution of the DSGE model draws on Pagan and Robinson (2016).
7DSGE models with long lags can be accommodated by expanding zt to include lagged

variables. The subsequent analysis is similar; the current values of variables would have to be
selected from zt.
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Now let us write

zt = B1zt−1 +B2zt−2 +GΣΣ−1εt

= B1zt−1 +B2zt−2 +GΣηt,

= B1zt−1 +B2zt−2 + Fηt,

where F ≡ GΣ. The resulting ηt will have unit variances but the impulse
responses to ηt are the same as those for a one standard deviation perturbation
to whatever the shocks εt are named.

That there are other models with different structural impulse responses can
be seen by writing

zt = B1zt−1 +B2zt−2 + FQ′Qηt
= B1zt−1 +B2zt−2 +Dη̃t,

where Q is a matrix with the property that QQ′ = Q′Q = I,D = FQ′ and η̃t =
Qηt.

8 Then the new shocks η̃t will be uncorrelated and the impulse responses
to them will also be to a one standard deviation perturbation in whatever they
are named. So the contemporaneous impulse responses have been changed from
F to D, i.e. we have a new model.

In what sense is the new model compatible with the MGP of the original
model with shocks ηt? The answer is that, since the cov(et) = cov(GΣηt) =
cov(GΣQ′η̃t), the model with η̃t shocks produces the same covariance matrix
for the VAR errors. Because B1 and B2 have not changed, the density function
for zt must be the same for both models i.e. the likelihood has not changed.
The new and existing model fit the data equally as well.9

Alternative Q matrices will therefore be the approach used to study the
range of impulse responses that are compatible with the MSM model, which is
a way to quantify the extent of model uncertainty present. The nature of this
analysis with the semi-structural VAR has strong parallels with sign-restricted
VARs, but B1 and B2 here are anchored by the DSGE model.

2.2 The Nature of Shocks in the Estimated MSM Model

Before we proceed to further analysis it is necessary to make clear what the
constraints are when generating any new set of impulse responses. Specifically,
we will not be generating impulse responses that produce a better match to the
data. Instead, we will be generating responses that constrain the shocks to be
uncorrelated and which replicate certain hypothetical results from the MSM
model. In these hypothetical results the dynamic parameters of the model B1

8Fry and Pagan (2011) discuss Q matrices that have this property. The best known of
them is the Givens matrix used in the sign restriction literature by Canova and de Nicolo
(2002) while Rubio-Ramirez et al (2010) give a general way of finding a Q matrix with the
requisite properties using simulation methods. We use an adaption of that method in what
follows.

9 In this respect the SSVAR is distinctly different to the DSGE-VAR literature, such as
Del Negro and Schorfheide (2004).
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and B2 are fixed at values estimated from data, while the structural shocks are
assumed to be uncorrelated. We raise this issue since it is not the case that the
MSM shocks estimated from the data are uncorrelated. Table 1 shows some of
the larger correlations.10

Table 1 Correlations of Selected Shocks from
the Estimated MSM Model

Shock Pair Correlation
corr(εr, εy∗) .67
corr(εr∗ , εψ) -.36
corr(επ∗ , εψ) .44
corr(εp∗ , εr) .34
corr(εg, εΥ) -.56
corr(εr∗ , µ) -.53
corr(εf , εn) .78
corr(εm∗ , εam) .62
corr(εm, εn) .32

To understand why Table 1 can record such non-zero correlations, even
though they are assumed zero in estimation, take the two regression equations

y1t = x1tβ1 + ε1t

y2t = x2tβ2 + ε2t,

and assume that ε1t and ε2t are uncorrelated when estimating β1 and β2. Then,
based on that assumption, the maximum likelihood estimates of β1 and β2
would be the OLS estimates. However, nothing guarantees that the residuals
ε̂jt formed from these are orthogonal. For this to be asymptotically true it
would be necessary that the assumption of zero correlation between the shocks
is correct. If this assumption is not true in the data, then ε̂jt will not be
orthogonal. Of course the estimators of βj in the example above are consistent,
even if there is correlation.

The reason for the lack of orthogonality is that we have two moment condi-
tions defining the parameter estimates βj- E(xjtεjt) = 0, (j = 1, 2) - and two
others defining the shock variances - E(ε2jt) = σ2j (j = 1, 2) - meaning that the
moment condition E(ε1tε2t) = 0 has not been needed for estimation of the para-
meters. So the moment conditions deliver more than is needed to get estimators
of the parameters i.e. we have an over-identified model.

Suppose instead we had written

y1t = x1tβ1 + ε1t (2)

y2t = x2tβ2 + γy1t + ε2t. (3)

Then three moment conditions are needed to estimate all the unknown parame-
ters, the system is exactly identified, and the residuals are orthogonal.

10The symbols are as in the MSM.
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The last scenario is a characteristic of recursively just-identified SVAR mod-
els, and it is this that ensures shocks in such models are orthogonal. In contrast,
DSGE models are typically heavily over-identified. For example, in Smets and
Wouters (2007), 36 parameters are estimated with 7 observed variables; a just-
identified SVAR(2), in contrast, would include 126 estimated parameters. In
MSM it is even more stark; 45 parameters are estimated, but there are 600
moment conditions. The theory built into these models results in them often
being very tightly parameterised.

In an overidentified system, not all of the moment conditions are used in esti-
mation or can be satisfied at once. Consequently, even though it is assumed that
the shocks are uncorrelated, this restriction may not be used in estimation and
the shocks obtained from an estimated DSGE model may well be correlated.11

This provides one explanation of the results in Table 1.
A second, supplementary, reason involves the use of Bayesian estimation.

Take the model in (2) and (3) but set x1t = x2t = zt. Let the MLE(OLS)

estimates by β̂j ,γ̂, σ̂j and the Bayesian estimates be βB
j , γB. Then we know

that the OLS residuals ε̂1t and ε̂2t satisfy the condition
1

T

∑T
t=1 ε̂1tε̂2t = 0,

where ε̂1t = y1t−ztβ̂1, ε̂2t = y2t− γ̂y1t−ztβ̂2. This is a zero covariance between

estimated shocks.12 Writing β̂j = βB + (β̂j − βB), γ̂ = γB + (γ̂ − γB) we can
see that the sample covariance between the Bayesian shocks is

1

T

T∑

t=1

εB1tε
B
2t = σ̂21(γ̂ − γB) + (β̂1 − βB

1 )σ̂
2
z[β̂1(γ̂ − γB) + (β̂2 − βB

2 )],

where εB1t, ε
B
2t are the estimated Bayesian shocks using βB

j , γB instead of β̂j , γ̂.

There is no reason why this should be zero unless β̂j = βB
j , γ̂ = γB.13 Now

the Bayesian estimates of parameters, βB
j , γB can be thought of as a weighted

average of the MLEs and the priors for βj , γ. So it is unlikely that β̂j = βB
j ,

γ̂ = γB although if the sample size is large the prior will drop out and these
will converge to zero. So another possible explanation is that Table 1 reflects
Bayesian estimation.14 Nevertheless, because the MSM is highly over-identified
it seems more likely that the results are due to that feature.

11Andrle, M. (2014) has made this point as well and says - “Yet, the actually estimated
‘structural’ shocks are strongly correlated as a rule rather than exception. Correlated struc-
tural shocks are a sign of misspecification". As our simple example shows this need not be
the case, although it is certainly inconsistent with the statistical assumptions being made for
estimation.
12We assume here that all data are mean corrected - as is common in DSGE models - so

OLS residuals have zero mean.
13The point we are making here is that in exactly identified models MLE will produce

orthogonal shocks but the use of prior information will change this. It is not an issue of
having a small sample. The OLS shocks have a zero correlation for any sample size but the
Bayesian ones will only have this for large samples.
14We have looked at the shocks in the Smets and Wouters (2007) model and find that there

the shocks are correlated but the correlations are smaller than for the MSM, probably because
the degree of over-identification is very much smaller. Of the 21 shock correlations 4 exceed
.2 in absolute value.
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It should be said that this is not the only problem that can arise for model
shocks from over-identifying information. The restriction that the innovations
to the structural shocks have no serial correlation may not be enforced. Table
2 shows that this is clearly evident for the MSM; for example the supposed
innovation to technology growth actually has an autocorrelation coefficient of
0.64. The phenomenon is not isolated to the innovations for the structural
shocks, but can also be true for any of the "measurement errors" that we will
discuss later. As Table 2 shows the autocorrelation of that type of shock for
resource prices is particularly high (0.76). So the empirical shocks and the
measurement errors are often very different from what has been assumed about
them. When it comes to data, assuming that they are white noise does not
make them so, as regression users learnt many years ago.

Table 2 Autocorrelation of Selected Shock Innovations
from the Estimated MSM Model

Innovation Mnemomic Autocorrelation
Technology Growth εµ .64
Investment Efficiency εΥ -.33
Resource Price εp∗z .40
Foreign Output εy∗ .64
Monetary Policy εr .59

Measurement Error
Nominal Exchange Rate .39
Foreign GDP .52
Resource Price .76

What are the consequences of the shocks being correlated? From the per-
spective of using the model, it makes variance decompositions problematic.
Moreover, one also really needs shocks to be innovations in order to utilize im-
pulse responses, for these work under a ceteris paribus assumption that would
not hold when shocks are correlated. Thus, if two shocks, say money and tech-
nology, are correlated, then we don’t know what the common component to
them represents - is it money or technology? Decompositions of variables ac-
cording to shocks are then very hard to interpret.

Of course we can take the estimated parameters B1, B2 as given and then ask
what the impulse responses are in this hypothetical context, that is assuming
that the shocks are uncorrelated, even though this assumption may not be
compatible with the data. The variance decompositions presented in Rees et al.
(2016) are a hypothetical experiment and relate to internal consistency of the
model, as the experiment does not represent the situation with the estimated
shocks and the data variables. Essentially they are constructing a scenario i.e.
asking what the results would be if the estimated parameter values were used
for B1 and B2, and then uncorrelated shocks are applied, rather than the actual
shocks found from the data. In what follows we will adopt this same scenario,
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constructing models and impulse responses which utilize the estimated B1, B2
and which reproduce the cov(et) from the experiments they performed.

2.3 Constructing the Alternative Models in Practice

One difficulty in constructing alternative models that have the same fit as the
hypothetical MSM model, but which embody different impulse responses, is to
make decisions about which shocks should be recombined. To understand the
issue consider the three variable SSVAR given by (4 )- (6) that we wish to
capture with an alternative model:

y1t = b111y1t−1 + b112y2t−1 + b113y3t−1 + f11η1t (4)

y2t = b121y1t−1 + b122y2t−1 + b123y3t−1 + f21η1t + f22η2t + f23η3t (5)

y3t = b131y1t−1 + b132y2t−1 + b133y3t−1 + f31η1t + f32η2t + f33η3t. (6)

In this model only one shock affects y1t. Now consider constructing new shocks
η̃jt = qj1η1t + qj2η2t + qj3η3t using a Q matrix. Then we see that all of the
new shocks η̃jt will have an impact upon y1t, because they are formed with η1t.
However, we may not want all of the η̃jt shocks to impact upon y1t, as this would
not preserve the fact that only one of the η̃jt should have a non-zero impact on it.
Therefore a Q matrix must be designed that preserves the zero impact of some
shocks. The simplest way to do this is to set q11 = 1, q12 = 0, q13 = 0, q21 = 0
and q31 = 0. Consequently, η̃1t = η1t and η̃jt = qj2η2t + qj3η3t (j = 2, 3). This
means that we use a (3×3) Q matrix of the form

Q =

[
1 0
0 Q2

]
,

where the (2×2) matrix Q2 has the properties Q′

2Q2 = I2 = Q2Q′

2. Clearly Q
has the requisite properties of Q′Q = I3 = QQ′.15

Another issue arises with the external sector. The MSM has a simple New-
Keynesian representation for the foreign sector of the form

ỹ∗t = Et(ỹ
∗

t+1)− (r
∗

t −Et(π
∗

t+1)) + u∗yt (7)

π∗t = βEt(π
∗

t+1) + κỹ∗t + u∗πt (8)

r∗t = ρrr
∗

t−1 + (1− ρr)(γyỹ
∗

t + γππ
∗

t ) + δ∆ỹ∗t + ε∗rt. (9)

Here the variables in the model are foreign ones and so are distinguished with
an asterisk. u∗yt and u∗πt are AR(1) shocks driven by innovations ε

∗

yt and ε∗πt, y
∗

t

is the log level of foreign output, ỹ∗t = y∗t − at, where at is the log of the level
of technology, and π∗t , r

∗

t are the foreign inflation and interest rate. There is a
separate equation, namely

∆y∗t = ∆ỹ∗t +∆at = ∆ỹ∗t + µt, (10)

15Arias et. al. (2014) have another way of generating Q that preserves zero restrictions.
Consequently, our choice may not exhaust the range of possible Q matrices and alternative
models that might be generated, but that would only mean that our range is possibly smaller.
Because it turns out that our range is large this does not seem a crucial issue, but further
investigation is warranted.

10



where µt is the innovation into technology described in the MSM model. We
will not re-combine this technology shock µt with the other external shocks in
forming new shocks. The reason is that µt is a permanent shock and the other
three are transitory. As Fry and Pagan (2011) observed one cannot combine
permanent with transitory shocks if you want some of the final shocks η̃t to be
transitory. Given that all shocks (apart from technology) are transitory in MSM,
it is not sensible to include the technology shock in the set to be re-combined.16

Finally, we have foreign and domestic shocks. In the MSM Australia is as-
sumed to be a small open economy, that is, the foreign sector is strictly exoge-
nous. However, if some of the newly created shocks were obtained by combining
the MSM external and domestic shocks then the small open economy assump-
tion would be violated. Consequently, by constructing new uncorrelated shocks
from the hypothetical uncorrelated shocks of the MSM those shocks that are
not re-combined are left at the MSM estimates, and so they will be uncorrelated
with any combination of the other shocks.

The MSM external sector has a SSVAR(1) format

zt = B1zt−1 + εMSM
t ,

where z′t =
[

ỹ∗t π∗t r∗t
]
. Hence, using the parameter values given by Rees

et al. the solution to the external system is an SSVAR(1) of the form17

ỹ∗t = .865ỹ∗t−1 − .248π∗t−1 + .083r∗t−1 + .003ε∗MSM
yt − .005ε∗MSM

πt − .049ε∗MSM
rt

(11)

π∗t = .108ỹ∗t−1 + .269π∗t−1 + .123r∗t−1 + .0006ε∗MSM
yt + .013ε∗MSM

πt − .009ε∗MSM
rt

(12)

r∗t = .954r∗t−1 + .005ỹ∗t−1 − .0095π∗t−1 + .0005ε∗MSM
yt + .0005ε∗MSM

πt + .001ε∗MSM
rt .

(13)

The equations (11)-(13) are identities. The shocks, such as ε∗MSM
yt , can be

converted to the corresponding unit variance shocks, η∗yt, simply by re-scaling

the coefficients attached to ε∗MSM
yt by the standard deviations of ε∗MSM

yt etc.
As an example, the interest rate equation becomes

r∗t = .954r∗t−1− .0095π∗t−1+ .005ỹ∗t−1+ .000098ηr
∗

t + .0001ηπ
∗

t + .0065ηy
∗

t . (14)

Then a new set of shocks η̃∗t needs to be constructed that are linear combi-

nations of the original normalised shocks, ηy
∗

t etc.. This must be done in such
a way as to ensure that they are uncorrelated with unit variance. To be clear,
the new SSVAR will still have the same dynamics i.e. B1 is fixed at the MSM
estimated values, and the covariance matrix for the hypothetical reduced-form
errors will be replicated by the new set of innovations η̃∗t . Consequently the

16 If we combined µt with the transitory shocks to create new ones η̃t, these would have
permanent effects and that would mean there is more than one supply-side shock.
17This was obtained using the simulation method in Pagan and Robinson (2016).
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alternative model fits the data equally well as the MSM external sector specifi-
cation. However, these new shocks η̃∗t will have different impulse responses, and
it is useful to look at the range of responses that can be generated. Of course a
wider range of impulse responses might be found that produce a superior fit by
allowing changes in the dynamics as well. Our focus here, however, is to gauge
the extent of model uncertainty for a given fit with the data.

Some of the alternative models that we generate with uncorrelated shocks
might be ruled out. This could be because they produce responses of unrealistic
magnitude. A weaker constraint is to eliminate models that do not produce the
same signs for contemporaneous impulse responses as the MSM does. Table 3
gives the latter for (positive) shocks to the structural equations (7)-(9).

Table 3: Signs for Contemporaneous Impulse Responses
To Three Shocks in the MSM External Sector

Variable Shocks
Demand Cost Interest Rate

ỹ∗ >0 <0 <0
π∗ >0 >0 <0
r∗ >0 >0 >0

The contemporaneous impulse response functions for the new shocks will be
compared to the signs from those in the MSM given in Table 3. If they agree
the impulse responses corresponding to the new shocks are accepted. If they
don’t then we draw a new Q, and once again combine together the three MSM
shocks. It is important to emphasize that we have retained the MSM dynamics
in this operation, i.e. B1 is fixed.

Generating 1000 models with uncorrelated shocks by re-combining the MSM
ones we find that 118 satisfy the sign restrictions in Table 3. Now, doing this
means we will be finding impulse responses in the alternative models to a one
standard deviation perturbation. But in each model there will be a different
standard deviation for a shock such as the monetary one. Consequently we
need to re-scale these impulse responses so that they are comparable to the
MSM results (we will refer to these as the standardized shocks).18

Focussing on the results for a monetary policy shock, these are shown in
Table 4. Considering first the contemporaneous impact on output, it is apparent
that the MSM responses are very much at the high end of the scale for monetary
effects. In fact there are only three impulse responses of the 118 that are larger
(in absolute terms) than that given by the estimated MSM. Therefore, it is
possible to find models that are observationally equivalent to MSM (in the
sense of replicating second moments) but which deliver a much lower impact for
monetary policy. This is the type of result that can be produced from the semi-
structural VAR approach that we believe will be of interest to policymakers
when assessing the output produced from estimated DSGE models. At the

18This requires us to find the implied standard deviation of the monetary shock in the
alternative models. To do this we use the method given in Ouliaris and Pagan (2016).
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moment one is using a model that implies a very strong impact for foreign
monetary policy when many other models could be produced that have the
same dynamics but a much weaker response.

Table 4: Contemporaneous Responses to a Standardized Monetary
Policy Shock in the MSM Foreign Sector

Magnitude Variables
Output Inflation

Maximum -.437 -.276
Minimum -.0004 -.0001
MSM -.346 -.066

Turning to inflation, it appears that the result predicted by MSM is less
extreme. As has been argued by Ouliaris and Pagan (2016), inter alia, it is useful
to think of the average of the maximum and minimum values as a representative
value. With that choice the MSM results are found to be about 1/2 of the
representative value.19 These results suggest that one either might need to look
more closely at the specification of the New-Keynesian model which is at the
heart of the foreign sector of MSM or at least perform experiments with the
equivalent models that produced the minimum and maximum responses. Of
course based on the magnitudes of the responses one might be able to rule out
some of the range of estimates.20

Now it is important to emphasize that we have only considered alternative
models that have the impulse response signs of Table 3 for a limited range of
variables. But the MSM also produces impulse responses of domestic variables
to these external shocks and they have a set of signs implied by the MSM
model. Hence we might reject an alternative model if it fails to reproduce the
contemporaneous signs of the impulse responses of all variables, both domestic
and foreign. When we do this some of the models above will be rejected. Indeed,
of the 118 models found above, only 3 are now retained as agreeing with all the
signs for impulse responses. Therefore, this requires the generation of many
more models than the 1000 used before in order to study the range of impulse
responses that are possible. Accordingly, we generated 100000 models, 77 of
which were retained as providing a complete match with the signs of all the
impulse responses from the MSM (ignoring the level of government expenditure
variable where there are zero effects of all shocks). Now the biggest and smallest
effects of monetary shocks on outout are at -.0353 and -.001, so the range has

19Baumeister and Hamilton (2015) pointed out that statistics such as the median of the
range of outcomes depended upon the simulation method employed and so were not especially
informative. This is illustrated in a simple way in Ouliaris and Pagan (2016).
20Regarding the foreign interest rate identity, (14) shows that the foreign demand shock

is the dominant force in the evolution of the foreign interest rate. Indeed, in the variance
decomposition for the external system the foreign demand shock ηy∗ explains 99.12% of the
variance of the foreign interest rate, while the monetary shock explains virtually nothing.
This seems a little odd. Furthermore, 41% of the foreign output gap variance is due to the
monetary policy shock, an impact of a magnitude rarely seen in small New-Keynesian models.
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narrowed, but it is still the case that the MSM output response is virtually the
largest in the complete set of alternative models. The same outcome is true of
the inflation response, where the minimum is now -.0359 and the maximum is
-.1072.21

3 The Nature of Variables and Their Represen-
tation

3.1 The Nature of Variables

In DSGE models, particularly as they become large, many of their variables
have no counterpart in the data used to estimate their parameters. A useful
distinction that can be made between the variables is to separate them into
the following categories: (i) observable, i.e. data is available on them; (ii)
partially observable, i.e. some data is available which contains information
about them; (iii) redundant, namely they can be substituted out as a function
of other variables, and (iv) strictly unobservable, for which there is no equivalent
data.

Turning to MSM, an example of an observed variable is the interest rate
rt, while stationized GDP, ỹ

va
t , is partially observed through GDP growth. In

total, the MSM model contains more than 80 variables, of which 55 are redun-
dant. Consequently, in the SSVAR representation of the MSM discussed above
there were 24 variables, of which 17 are observable or partially observable and
seven are unobserved. Examples of the latter are the net foreign assets to GDP
ratio and the sectoral capital stocks.22 MSM also includes 17 shocks (excluding
measurement errors).

3.2 A VAR/VECM Representation of DSGE Models Via
Error-Correction terms

Many DSGE models now include permanent shocks, such as non-stationary
technology, and therefore they feature cointegration between many of the vari-
ables. This is true of MSM. Our objective here is to look at what the Vector
Error Correction representation of it might be. This was done theoretically
for DSGE models in Christensen et al.. (2011), but it is much simpler to use
the simulation approach in Pagan and Robinson (2016) to construct the un-
derlying SSVAR. Indeed what we will develop could be called a semi-structural
VECM, since the system will include changes in some variables, as well as error-
correction terms. There are other aspects to reconciling the model and the data,

21 In Liu et al. (2018) we also look at the range of the MSM impulse responses to domestic
shocks that might be generated and retain the same fit as the MSM, finding that that they
seem to be less extreme. The method of doing this is the same as for the foreign sector so is
omitted to conserve space.
22The complete list of unobserved variables includes πf,t, b

∗
t , km,t, kz,t, λz,t, λn,t and λm,t.
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such as the nature of deterministic trends and their implications for the error-
correction terms. In the MSM model the deterministic growth rates in all of
the real variables are the same. However, this may not be true in the data. To
handle this problem Rees et al. adopted a commonly used approach, namely
they mean corrected the data growth rates and then modelled the resulting se-
ries. Essentially this removes a linear deterministic trend from the log levels
of data and thereby avoids any lack of co-trending between the variables. It
means that the error-correction terms should not have any trend. However, if
there are breaking trends in the data, rather than a constant one, this can show
up as a trend in the error-correction terms. Such a breaking trend would need
to be allowed for in estimation, otherwise there is a mis-specification and the
likelihood is incorrect.

As many of the policy-oriented DSGE models such as MSM are large, in
order to demonstrate the semi-structural VECM representation we first consider
a simple example. Suppose we had a DSGE model that had three variables that
were I(1) - the logs of domestic output yt, consumption ct, and foreign output
y∗t . Then these are integrated processes because of the log level of technology at
being I(1). Just as for the MSM, in this DSGE model we would have variables
ỹt = yt − at, c̃t = ct − at and ỹ∗t = y∗t − at. Imposing strong exogeneity of the
foreign sector the SSVAR would have a form such as

ỹ∗t = b11ỹ
∗

t−1 + εy∗t
ỹt = b21ỹ

∗

t−1 + b22ỹt−1 + b23c̃t−1 + g21εy∗t + g22εyt + g23εct

c̃t = b31ỹ
∗

t−1 + b32ỹt−1 + b33c̃t−1 + g31εy∗t + g32εyt + g33εct.

Now there are four I(1) variables here - yt, ct, y
∗

t and at - and there are three
error-correction terms - ỹt, c̃t and ỹ∗t . Rather than use this SSVAR form we want
to rewrite the equations above in terms of observable error-correction terms,
since ỹt and c̃t are only partially observable due to the technology shock. It
should be noted, however, that it is not possible to write the model in terms
of observable error-correction (EC) terms alone.23 We will use two observable
ones, namely ξ1t = yt − y∗t and ξ2t = ct − yt, and one partially observable,
ξ3t = ỹ∗t . The equation for ∆ỹt can then be expressed as

∆ỹt = b21ỹ
∗

t−1 + (b22 − 1)ỹt−1 + b23c̃t−1 + g21εy∗t + g22εyt + g23εct

= b21ỹ
∗

t−1 + (b22 + b23 − 1)ỹt−1 + b23ξ2t−1 + g21εy∗t + g22εyt + g23εct

= (b21 + b22 + b23 − 1)ỹ
∗

t−1 + (b22 + b23 − 1)ξ1t−1 + b23ξ2t−1 + g21εy∗t
+g22εyt + g23εct

= φ21ỹ
∗

t−1 + φ22ξ1t−1 + φ23ξ2t−1 + g21εy∗t + g22εyt + g23εct.

23To see this, suppose for simplicity that we manipulate the error-correction terms so that
they are relative to domestic GDP, rather than to technology. This can be done for all of the
variables except domestic GDP itself, so it would remain relative to technology and therefore
partially observed.
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Consequently, in terms of the observable ∆yt,

∆yt = ∆ỹt + εat
= φ21ỹ

∗

t−1 + φ22ξ1t−1 + φ23ξ2t−1 + g21εy∗t + g22εyt + g23εct + εat.(15)

This is an identity. There will be a similar equation for c̃t. The advantage is the
separation of the EC terms into those that are observable - ξ1t, ξ2t - and only
one that is partially unobservable - ỹ∗t .

This approach can also be applied to the MSM. Because it defines ỹvat =
yvat −at, EC terms would be formed as ξ

va
t = yvat − y∗t , ξ

c
t = c̃t− yvat = ct− yvat ,

ξit = it − yvat etc., so that the domestic variables are relative to GDP while
aggregate GDP is relative to foreign GDP. Ultimately, this means that there will
then be only one partially unobservable EC term (y∗t − at). Fully unobserved
variables such as a sectoral capital stock, k̃m,u, are left in this form, as there is no
point in expressing them relative to an observed variable. The representation for
domestic output growth in MSM equivalent to (20) is presented in the Appendix.

What can we learn from this representation? First, we can gauge, among
the many factors influencing GDP growth, the importance of the strictly unob-
servable variables.24 If these are omitted from the regression, the R2 goes from
unity (recall this representation is an identity) to .998, so these contribute little
to the explanation of GDP growth. Second, we can also look at the importance
of the innovations to the shocks. Indeed, when all innovations εt are deleted the
R2 drops to .22. Hence current shocks are the most important factors affecting
GDP growth. It is this fact that explains why recessions are so hard to predict,
as future shocks must be known in order to predict whether future growth rates
are negative. Essentially, this is an informal way to judge the likely performance
of a model at forecasting.

It is also possible to examine which of these shocks is the most important.
One might expect growth in non-stationary aggregate productivity, µt, to be
that, but deleting only that shock reduces the R2 from unity to .99. Deleting
the separate domestic industry productivity shocks εant etc. has a much greater
impact, with the R2 going from unity to .82. But by far the most important sin-
gle shock is the marginal efficiency of investment εΥt

, since removing it reduces
the R2 to .71.25 The R2 available from the SSVAR, in this case reformulated
using error-correction terms due to the presence of a permanent shock, is a use-
ful metric for looking at either the importance of unobserved variables or the
innovations.26

The analysis above can be repeated for inflation. Removing the innovations
results in a substantial drop in the R2 to .23. Again this suggests that it will
be difficult to predict inflation. In contrast to the results for output growth,

24The unobserved variables are πft−1, k̃m,t−1, b
∗
t−1, b

∗
t−2, k̃m,t−2, k̃z,t−1, k̃z,t−2, λz,t−1,

λn,t−1 and λm,t−1.
25One can see this effect as well from Rees et al.’s figure 10.
26Of course when one turns to data rather than the hypothetical scenario the shocks are

actually correlated, so that it is not possible to uniquely attribute any part of actual GDP
movements to particular shocks.
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deleting the unobservable variables from the regression results in an R2 of .55.
So this points to a problem of matching data and model variables. Indeed the
first order serial correlation of inflation from the model is .34 and the data is
.48.

There are other comparisons we might make, such as comparing the statistics
on the observable EC terms in the model to the data. This could involve tests
for whether the estimated EC terms are indeed I(0). Instead, Table 5 presents
some evidence of their volatility in the MSM model relative to the data. Doing
so, it is apparent that the model generally produces much greater volatility than
that evident in the data. With exactly identified models the estimated model
variances would match those of the data.

Table 5: Volatility of Selected Error-Correction Terms from the
Estimated MSM Model

Error-Correction Mnemonic Standard Deviation
Model Data

Non-Traded GDP ξnt 1.17 0.79
GDP ξvat 1.99 1.72

Investment ξit 7.66 4.97
Government Expenditure ξgt 5.12 2.60
Consumption ξct 2.75 2.08

4 Identification Issues in DSGE Models

Multiple models with an equivalent fit may alternatively occur if some of the
DSGE parameters, θ, are not well identified. In DSGE models identification
issues can be a reflection of the model solution being largely invariant to different
values of the elements of θ, or the likelihood being insensitive to the solution
(see Iskrev 2010). In this section we discuss two methods that have been applied
in the literature to ascertain if weak identification exists, practical issues that
arose in their application to MSM, and how these can be handled.27

Consider the log likelihood L(θ) as a function of parameters θ.Then a second-

order approximation around the maximum likelihood estimate, θ̂ yields

L(θ) = L(θ̂) +
1

2
(θ − θ̂)′Hθθ(θ̂)(θ − θ̂) + ”terms”, (16)

where Hθθ is the Hessian
∂2L
∂θ∂θ′

. The omitted “terms" should be smaller than
the other elements. Hence

1

T
{L(θ)− L(θ̂)} ≈

1

2
(θ − θ̂)′(T−1Hθθ(θ̂))(θ − θ̂). (17)

Now the lim
T→∞

− 1
T
E[Hθθ(θ)] = Iθθ, the asymptotic information matrix and

we might replace the above with

27Canova and Sala (2009) demonstrate that simply comparing the prior and posterior may
not detect identification issues.
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1

T
{L(θ)− L(θ̂)} = −

1

2
(θ − θ̂)′Iθθ(θ̂)(θ − θ̂) + op(1).

So then the magnitude of the right hand side indicates how much a change from
θ̂ to another value θ would change the log likelihood (scaled by T ). If we put

θ = 0 then

√
θ̂
2

i Iii(θ̂)/2 might be used as an index of this for the i′th parameter
θ. If this is low then the likelihood does not change much when θi values depart
from zero, a characteristic of weak identification.

The quantity ln(

√
θ̂
2

i Iii(θ̂)) is the “sensitivity" index that Dynare produces
to assess the identification of the parameters - see Ratto and Iskrev (2010) -

except that θ̂i in their case is not the MLE but rather the prior mean. A
difficulty with the latter choice is that, while ∂L

∂θ
(θ̂) = 0, this will not be zero at

the prior mean, and so (17) has another term in it. If one is analyzing a DSGE
model that has been estimated with Bayesian methods then the Bayes posterior
mode would be a more appropriate choice.28 Fundamentally, this is a scaling
issue. Another problem is that we probably should evaluate the information
matrix at θ̂ and not at a prior mean. Again, using the Bayes mode makes sense
in a Bayesian context.

Although there is no threshold value of

√
θ̂
2

i Iii(θ̂)/2 that might signal weak
identification, the relative magnitudes provide a guide to which of the para-

meters are likely to be weakly identified. Using a value of

√
θ̂
2

i Iii(θ̂)/2 of less
than 1.7 we find that a number of parameters are potentially weakly identified,
in particular the response of all inflation rates to marginal cost pressures (the
“slopes" of the Phillips curves).29 This suggests that one should examine more
closely the estimated slopes of the Phillips curves.

Reverting back to Equation (??), we might have used T−1Hθθ(θ̂) as our
criterion. Koop et al. (2013) suggested a “learning rate indicator" for identifica-
tion which involves simulating the DSGE model with the estimated parameters,
and then studying the rate at which the precision Hθθ(θ̂) changes. They argue
that, when there is more than a single parameter, this is a better check of iden-
tification than simply looking at the closeness of the posterior and prior for any
single parameter and observe that, in an identified model, Hθθ(θ̂) should rise at

rate T, meaning that T−1Hθθ(θ̂) will tend to a constant. In contrast, if the pa-

rameter is weakly identified, it will rise at a slower rate, and so T−1Hθθ(θ̂) will
decline. Hence, by simulating the model and then estimating Hθθ for a range
of T we can determine whether there might be a weak identification problem.30

28This is because the mode is the θ that maximizes C(θ) = L(θ) + log p(θ), where L is the
log likelihood and p(θ) is a prior density. Consequently the mode sets ∂C

∂θ
= 0 and we could

apply the same expansion as above to C(θ) rather than L(θ). The negative of the expected
value of the second derivatives of 1

T
C(θ) will be asymptotically the information matrix, since

the prior is dominated as the sample size grows.
29 In contrast, the parameter ρr∗ , which is the inertia effect in the foreign interest rate rule,

has the sensitivity index at 76.
30The logic of this last remark comes from noting that Hθθ(θ) =

∑T
t=1

∂2Lt
∂θ∂θ′

and so
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In practice, a weakly identified model will become identified as T becomes very
large, so that the index stops declining with very large T, which can be seen in
Koop et al.’s tables.

The implementation of the test is not entirely straight-forward for MSM since
the simulated Hθθ was sometimes not negative definite.

31 Consequently, we
use a variant, focussing on identification issues for each parameter individually.
Data is simulated from the MSM using the parameters estimated by Rees et
al.. i.e. these are treated as the correct ones. Then a particular parameter
is selected, call it θ1, and it is estimated by maximum likelihood and Bayesian
methods, with all other parameters not being estimated but set to the true values.
Designating the computed standard deviation of this estimated coefficient by σ̂1,
studying the rate of convergence of σ̂1 should tell us about identification. Koop
et al. referred to this in their work on the New Keynesian Phillips Curve and
they noted that an identified parameter had σ̂1 tending to zero much faster than
for the unidentified ones. This approach circumvents the problem above and,
as only one parameter is being estimated, it is quick to implement, even with
large data samples.32

Estimation was performed on a simulated sample of M = 1500 data points
using sub-samples rising from 100 to 1500 observations by 100 at a time.33 It is
useful to assess the speed of convergence by regressing the resulting estimated
standard deviations for the single parameter being estimated against the sample
size. Specifically, we regress ln σ̂1 against a constant and ln(M). The coefficient
on lnM, γ̂, should be -.5 for an identified parameter. In fact, the estimates for γ̂
for the Phillips curve slopes are values between -.63 (non-resource exports) and
-.91 (foreign economy), so this does suggest some weak identification issues. By
comparison a parameter which has a very high sensitivity index, namely ρr∗ ,
gives an estimate of -.56, with a standard deviation of .02.

A related criterion which uses the same simulated data is to study how the
recursive estimate θ̂1 constructed using the simulated data changes as the sample
size grows. Since all parameters are set at the true values when simulating the
data, and only θ1 is estimated, we would expect that θ̂1 should converge to its
true value if θ1 was strongly identified. Slow convergence points to there being

E[Hθθ(θ)] =
∑
E( ∂

2Lt
∂θ∂θ′

) = TE( ∂
2Lt

∂θ∂θ′
) under stationarity i.e. T−1Hθθ(θ) should converge

to a constant as T → ∞. In analyzing weak identification the local to zero approach puts
E( ∂

2Lt
∂θ∂θ′

) = D√
T
. Consequently, E[Hθθ(θ)] =

TD√
T
=
√
TD, and so it grows at a slower rate

than T. Under such conditions, when there is weak identification 1

T
Hθθ(θ) will decline to zero

as T increases.
31The problem was also encountered by Caglar et al (2011) in their application of the Koop

et al. approach to the Smets and Wouters (2007) model. Their strategy to address this was
to simply vary the sample until they got a Hθθ that was negative definite.
32As a referee observed, even if a single parameter was found to be strongly identified, it

does not mean combinations of them are. So, if we find found that each of the individual
parameters were strongly identified when the others are fixed, it would not be possible to
conclude that all the model parameters are jointly identified.
33 In other words, we are essentially performing a recursive estimation using samples 1-

100,1-200, 1-300..... We actually simulated 10000 observations and dropped the first 8500 to
eliminate any initial condition effects.
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weak identification. Moreover, it is often the case that with weak identification
one sees “jumps" in the estimated θ̂1 as the sample size gets larger.

Figure 1 shows a plot of the estimated Phillips curve slope for the non-
traded sector, κπn , as the sample is expanded from 100 to 1500. The true value
is .2902. Two estimators are given - unconstrained maximum likelihood and
the Bayesian mode using the MSM priors. As expected, we see that there is
very little difference between all three estimators as the sample size grows, since
the prior gets dominated. Even in small samples the differences are not great.
It should be noted that there is very little evidence of convergence to the true
value of .29. This contrasts with what one sees for ρr∗ , where the true value is
.928 and the estimated quantities start at .918 (for 100 observations) and finish
at .93 (for 1500). We note that there is a sample where the estimated parameter
for κπn dropped to a very small value and, as mentioned above, that type of
behaviour is consistent with weak identification. This pattern is repeated for the
slope coefficients of all the Phillips curves. A difficulty in identifying the slope
of the Phillips curves is not isolated to MSM; for a discussion see Schorfheide
(2008).

In summary, if the data had been generated with the parameter values es-
timated by Rees et al. there would be a bias in some of the Phillips curves
slopes.34 Moreover it is clear that we could get values that are close to zero.
This is despite the fact that the prior on κπn that Rees et al.. used had a mean
of 50. As the slope of the Phillips curve is a crucial parameter for policy assess-
ments and forecasting it would seem that one would need to look at a wide range
of parameter values for the slopes when conducting policy assessments, since the
weak identification analysis suggests that they are very hard to estimate.

5 Comparing the Model and Data Generating
Processes

It emerged from the VECM representation of MSM constructed above that the
variance of GDP growth in the model considerably exceeds that in the data
used in estimation.35 What are the implications of this?

Suppose that we had a model with two shocks and one of the variables in
the model was generated by

yM1t = d1ε1t + d2ε2t,

where the εjt are uncorrelated. Assuming that the same structure is used for
estimation we would end up with (in large samples)

yD1t = d1u1t + d2u2t,

34 In the light of recent discussion about the decline in values for slopes of Phillips curves it
is interesting to note that the bias would be downward.
35This is also evident from Table 5 in Rees et al.

20



0

0.05

0.1

0.15

0.2

0.25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

MLE

Bayes

Figure 1: Recursive MLE and Bayesian Estimates of the Slope of the Phillips
Curve for the Non-traded sector

where the ujt are the shocks found after estimation. In large samples the vari-
ances of ujt will equal that of εjt. Then, if var(yD1t) < var(yM1t ), it must be
that there is a negative correlation between u1t and u2t. If it was positive then
var(yD1t) > var(yM1t ). So this explains why the negative correlations between
shocks found earlier can occur, and it reflects the fact that one of the assump-
tions used in estimation is incorrect. One possible response to this is to argue
that the data has measurement error in it, and that is why the model variances
do not match the data variances. The MSM model does incorporate such a
feature, so we look at the issues of bridging data and model via measurement
error in Section 5.1. Then in Section 5.2 we ask whether the presence of unob-
servable variables in the MSM would mean that we could not easily capture the
impulse responses of the model by just using observable data. Finally, Section
5.3 asks whether the business cycles that would be produced by the MSM would
resemble those of the Australian economy.

5.1 Bridging Data and Model via Measurement Error

One development in estimating DSGE models has been to build a bridge to the
data via measurement errors. That is, if the model variable is yMt and the data
is yDt , the equation yDt = yMt + ζt is added to the system. The implications of
including measurement error ζt were analysed in Pagan (2017); here we discuss
the results for the MSM.
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A ζt will exist that reconciles the data and model variables. Watson (1993)
considered this and, as he noted, some assumption has to be made about the
relationship of yMt and ζt, i.e. how do the reconciliation shocks (“measurement
errors") and the model shocks interact? One specification is that they are
uncorrelated, and that is the primary assumption used in the MSM.

There are also other decisions that need to be made. Two stand out. First,
how does ζt evolve, i.e. what is its nature? Second, do we fix or estimate the
parameters of the generating process for the ζt? The answer to the first of these
questions given in the MSM was to assume that ζt are white noise processes
that are uncorrelated with one another. This means that the only parameters
involved in the ζt processes are the variances of the shocks, and they were set in
the MSM to values that were connected to the magnitude of yDt . The motivation
for this approach seems to be that the model shocks would explain a certain
percentage of the data while the “measurement error" accounted for the rest.

5.1.1 Parameter Choices for the Measurement Error Process

To examine the consequences of fixing the variance of the shocks ζt, particularly
for multi-sector models like the MSM, we use the fact that aggregate GDP
growth in the model is constructed by weighting sectoral GDP growth rates.
This follows from Equation A27 of Rees et al. (2016) and it will yield36

∆yvat = ω1∆yvant + ω2∆yvamt + ω3∆yvazt . (18)

All observed growth rates differ from the model equivalents according to some
measurement errors (here “obs” indicates the observed data):

∆yva,obst = ∆yvat + ζvat

∆yva,obsnt = ∆yvant + ζvant

∆yva,obsmt = ∆yvamt + ζvamt

∆yva,obszt = ∆yvazt + ζvazt .

Using (18) we have that the difference between observed GDP growth ∆yvat and
the weighted average of the observed sectoral growth rates is ψt = ζvat −ωnζ

va
nt−

ωmζvamt − ωzζ
va
zt . Now, from the data the standard deviation of ψt is .49, while

using the parameter values from Rees et al.. of ωn = .64; ωm =.23,wz = .13,
σn = .18, σm = .36, σz = .74, std(ηvat ) = σva

y = .18, we would get a value of .25.
Accordingly, it is clear that the measurement error shocks used in MSM do not
provide a reconciliation of the model with the data.

How this can be so? One possible reason is that the standard deviations of
the measurement errors are being set rather than being estimated. However,
estimating these does not substantially change the result.37 Other possible
reasons relate to the other assumptions being made. One assumption is that the

36The sectors are non traded (n), non-resource exportables (m) and resource exportables
(z).
37One further aspect to note is that, unless these standard deviations are parameters to
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measurement errors are uncorrelated with the model variables. In fact, this is
not the case; e.g. the correlation between the technology shock and measurement
error in resource exports is .4, that between the risk premium shock and the
nominal exchange rate measurement error is .83. Another assumption is that
the measurement error shocks are uncorrelated with each other. Again, there
are actually many substantial correlations; for example those between ηvat and
the three industry GDP measurement error shocks ηvant (−.79), ηvamt (−.82) and
ηvazt (−.74), while the correlation between measurement errors in investment and
consumption is .7.38

5.1.2 The Interrelationship of Measurement Error Specification and
Data

The nature of the ζt needed to reconcile the data and model variables may also
be an issue. The only variables exempt from measurement error in the MSM
are the nominal interest rates. To see the possible unintended consequences of
including measurement error shocks we look at the change in the real exchange
rate (qt), which is defined as (from their Equation A31)

∆qt = ∆st + πt − π∗t ,

where st is the log of the nominal exchange rate. Then the data variables are
πD
t = πM

t + ζπt , π
∗D
t = π∗Mt + ζπ

∗

t , where the ζt are measurement errors. Hence
we have for the data

∆qDt = ∆sDt + πD
t − π∗Dt

= ∆sMt + ζ∆s
t + πM

t − π∗Mt + ζπt − ζπ
∗

t .

Cumulating these produces

qDt = sMt + PM
t − P ∗M

t +
t∑

j=1

(ζ∆s
j + ζπj − ζπ

∗

j ).

In the model qMt = st + PM
t − P∗Mt is an I(0) process, since there is co-

integration between the nominal exchange rate and the relative prices. Because∑t
j=1(ζ

∆s
j + ζπj − ζπ

∗

j ) is an I(1) process it follows that, unless the variance of

estimate, observed GDP is redundant. To see this, recall that the observed data for MSM
consists of seventeen variables. These include the aggregate GDP growth ∆yvat and the
sectoral ones ∆yvajt (j = m,n, z). Given ∆yvajt and the other 13 variables one can set up a

likelihood to find estimates of the MSM parameters θ. Defining ∆ySt =
∑
j ωj∆y

va
jt , where ωj

are weights used in the MSM, then we have ∆yvat = ∆ySt + ζ
va
t , where ζvat is a reconciliation

or measurement error. So ∆yvat is not used in estimating θ but would only be used to find
the variance of ζvat . Hence it means that there are only 16 observable variables being used to
estimate the 17 MSM shocks and so these 17 cannot be uniquely recovered. This also meant
that in the weak identification analysis above, which was conducted without measurement
error, observed GDP growth was omitted to avoid a singularity.
38Because the DSGE model is over-identified we can estimate these correlations.
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Figure 2: Log of the Real Exchange Rate

(ζ∆s
j + ζπj − ζπ

∗

j ) is zero, the real exchange rate in the data is predicted to be
I(1). Because in the MSM measurement errors are taken to be independent and

white noise processes the variance of (ζ∆s
j + ζπj − ζπ

∗

j ) will not be zero. In other
words the introduction of measurement errors predicts a lack of co-integration
between the nominal exchange rate and relative prices in the data.

Applying an ADF test to the latter series (based on four lags) gives -1.58,
which does seem to point to an I(1) process, and implying that this could be
handled by allowing for measurement errors in the domestic and foreign inflation
rates. Looking at the plot of the real exchange rate in Figure 2 (this is after
mean correcting the change in the nominal exchange rate and the domestic
and foreign inflation rates) it is apparent that there is a deterministic trend in
the data i.e. a shift in the mean of the growth rates after 2003 rather then a
stochastic trend. Kulish and Rees (2015) noted this and proposed that one allow
for such trend shifts in a model like MSM. So the incorporation of white noise
measurement errors does not provide a satisfactory solution. One needs to effect
any reconciliation with a different method. Relatedly, if a model is to be used
for policy analysis one needs to make some assumptions about the nature of the
reconciliation shock into the future, as the policy maker is ultimately interested
in the implications for the actual data, rather than the model variables.

Similar implications extend to many other variables in the model. A note-
worthy example is that yvat and y∗t in the model co-integrate but they will be
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predicted to not have that property in the data. Clearly measurement error
could be a useful device to reconcile data and model variables when there is
co-integration implied by the model but it is not present in the data. Viewed
in this way ζt is best thought of as a reconciliation shock, since it aims to rec-
oncile the model and data, rather than measurement error. In order for the
reconciliation shocks, ζt to actually achieve a reconciliation between the model
and data the way they are modelled is important. For example, if none of the
error-correction terms defined by the model are I(0) in the data, then one can
choose ζt to be white noise. However, if a model-defined error-correction term is
I(0) in the data, an assumption of white noise measurement errors is incorrect,
since the data and model are already reconciled on that dimension.39

There is an argument for re-structuring DSGE models like MSM as we did
for the SSVAR, expressing them in terms of EC terms plus y∗t − at. Then we
could work with the growth rates, error-correction terms and ∆y∗t as the data,
and have the reconciliation shocks placed on the error correction terms. That
enables more flexibility than placing them on the growth rate data.

5.2 Approximating DSGEModels with an Observable Vari-
ables SSVAR

As we saw earlier in section 2.1 most DSGE models have an SSVAR involving
both observable and unobservable variables. So what happens if one only fits an
SSVAR with observable variables? This is of interest because, if it is found that
the DSGE model can be approximated well by a SSVAR(2), then it suggests
one could obtain similar results from other models as long as they also have
such a representation. There could be advantages to working with these other
models, in particular institutional features of the economy under investigation
may be captured more easily with them..

Pagan and Robinson (2016) looked at this for a range of DSGE models in
the literature and found that, in many cases, an SSVAR(2) fitted quite well,
in the sense of being able to generate impulse responses that were those of the
underlying DSGE model. It is always worth looking at this after a DSGE model
has been constructed. To illustrate take the ỹ∗t of the external sector of MSM
and set up its connection with observed foreign GDP growth ∆y∗t

∆y∗t = ∆ỹ∗t +∆at = ∆ỹ∗t + µt. (19)

Equation (11) provides an expression for ỹ∗t from the solution to the MSM
and, combining this with (19), we get

∆y∗t = −.248π∗t−1 + .083r∗t−1 + {−.135ỹ∗t−1 + .003ε∗yt − .005ε∗πt − .049ε∗rt + µt}.

39A referee asked whether one might treat the measurement error as being on the I(1)
variable. If that error is taken to be I(0) then it will disappear relative to the variance of
the "true" I(1) variable as the sample size grows. Pagan(2017) discusses methods that one
might use to avoid the lack of co-integation issues raised here. One is to assume that the
measurement error in growth rates is ∆ζt , where ζt is white noise, and this is equivalent
to adding ζt on to the level of the model variables. A more appealing solution though is to
introduce an error correction term involving the measurement error.
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Figure 3: Impulse Response of Foreign GDP Growth to a Foreign Monetary
Policy Shock, All and Just Observed Variables

If the term in brackets is close to white noise then a VAR(1) in ∆y∗t , π
∗

t and
r∗t would fit this equation quite well. Essentially the question of how important
the approximation error is boils down to comparing the relative variances of the
omitted term −.135ỹ∗t−1 and the disturbance .003ε∗yt − .005ε∗πt − .049ε∗rt + µt.
Since the var(ỹ∗t ) = .0001 and var(µt) = .0001, it follows that the series in
brackets will look like white noise. Indeed if one fits a MA(1) process to it one
finds a coefficient of .07. The situation differs for the π∗t equation, where the
MA(1) coefficient is .24. So we might expect some difficulties in capturing the
inflation responses. Figures 3 and 3 below show that this seems to be true; in
these figures we look at the ability of an SSVAR(2) in observables ∆y∗t , π

∗

t and
r∗t to capture the monetary impulse responses for the foreign sector of the MSM.
Note that in order to study the pure approximation error we begin the impulse
responses with the values of the contemporaneous responses - the argument for
this is given in Pagan and Robinson (2016).

We can also study impulse responses for the domestic sector. Liu et al.
(2018) give a variety of these and we show two here in Figures 5 and 6 - in-
flation and the real exchange rate responses to a monetary shock. Generally,
the correspondence is quite good for all impulse responses, particularly over the
first two years.
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5.3 Examining Some Features of the DSGE Generating
Process in Relation to Data

It is often not realized that there is a need for a DSGE model to replicate the
volatility of GDP growth if it is to produce historical business cycle outcomes.
To illustrate this we look at the business cycle outcomes embedded in the MSM
since we know that it produces an excessive volatility in GDP growth. One
outcome that is always worth looking at is the number of negative growth rates
we would get from the model versus that in the data. To examine that we
add back the mean growth rate to the model series and then ask how many
negative growth rates would be produced. For the MSM we find that there are
four times as many as in the data. This suggests that the model will produce
quite a lot of recessions since any recession starts with a negative growth rate.
Alternatively, one can identify recessions using the turning points in the level
of the series, found with rules like those used by the NBER to date business
cycles. This literature is surveyed in Harding and Pagan (2016). Pagan and
Robinson (2014) used it to assess financial DSGE models, finding that they
were unable to produce realistic characteristics of business and financial cycles.
So we simulate GDP data from the MSM model (with uncorrelated shocks) and
apply the BBQ program of Harding and Pagan(2002) in order to locate turning
points.40 These are presented in Table 6.

40This is available as an add on to EViews and is present in other sources such as R. Matlab
and Excel versions of BBQ are at http://www.ncer.edu.au/resources/data-and-code.php
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Table 6 The MSM Business Cycle Characteristics

MSM (all shocks) MEI Omitted Foreign Omitted

Durations
Dur Con 2.5 2.5 2.7
Dur Expan 27.3 54.6 28.7

Amplitudes

Amp Con -1.2 -.93 -1.2
Amp Expan 25.0 47.2 26.4

We see from this that the model produces a complete cycle on average every
7 years. This is considerably different to the recent Australian experience, as
the current expansion has lasted more than twenty years. Applying the dating
algorithm to the actual data used in the MSM estimation we also find that
there were no recessions. Consequently, it is clear that the model has an in-
built feature that would predict recessions too often.

Business cycle dating can also be used to ascertain the importance of partic-
ular shocks in determining the business cycle characteristics. This is simple to
implement, in that it involves simulating data from the model with that shock
turned off, applying the dating algorithm, and then comparing the cycle char-
acteristics to those obtained with all of the shocks. Such exercises are shown
in Table 6. Table 6 shows that the characteristics are dramatically altered
when the marginal efficiency of investment shock is omitted - in particular, the
duration and amplitude of expansions approximately double. Using different
methods Justiniano et.al. (2011) found this shock to be important in U.S. mod-
els, and they argue that it is proxying for financial shocks. In contrast to the
MEI shocks, Table 6 shows that omitting external shocks has relatively little
impact.41

6 Conclusion

The construction of large DSGE models are impressive achievements. This is
very true of the MSM. It provides a feasible way of implementing the tradeable/non-
tradeable model of a small open economy, while at the same time handling a
number of sectors that are an important institutional feature of the Australian
economy.

In many instances DSGE models do not match some characteristics of the
data. This may not be surprising; ultimately all empirical macroeconomic mod-
elling involves making compromises along some dimensions. Our work, however,

41See Justiniano and Preston (2010), who show that small-open economy DSGE models
often attribute a surprisingly small role to foreign disturbances.
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suggests that a failure to match data on some levels can have broad implica-
tions for the nature of the shocks that are in the data, and these may not be
adequately recognized in the estimation and use of the model. The MSM model
(and many other DSGE models) are being used as if the shocks have exactly
the same properties as were assumed about them in estimation. When DSGE
models are exactly identified this is correct. However, DSGE models are typi-
cally over-identified and, consequently, experiments being performed under the
estimation assumptions about the shocks are hypothetical, and may be con-
trary to the data. Such experiments may be suitable for understanding the
ways in which shocks potentially work through an economy, but whether the
data-compatible shocks enter in the same way is unknown.

The essential point is that once any DSGE model is established and es-
timated, one needs to spend time investigating its properties, particularly in
relation to the the data. This involves more than just looking at a few moments
or (in a Bayesian context) a marginal likelihood. Simulating the model so as to
study other ways of judging adequacy, such as business cycle outcomes, often
provides insight into weaknesses that are not apparent from studying a few mo-
ments. If there is a failure along these dimensions then the question that needs
to be raised is whether something important has been missed. In addition to this
the question of whether parameters are well identified should also be examined.
In the case of MSM our analysis suggests that the slopes of the Phillips curves
in all of the sectors may only be weakly identified. This means that when the
model is used, one should assume a range of scenarios with different parameter
values.

The practice of adding measurement error into DSGE models (which has
become quite common) often leads to unintended implications that are assess-
able from the data. This problem is particularly acute when such errors are
associated with growth rates in variables (as in the MSM), since then there are
testable co-integration implications. This was set out in Pagan (2017), and here
it was applied in the context of the MSM. Our feeling is that it is generally not
a good idea to claim that there is measurement error. In the event that one
does, it needs to be done with great care. In particular, one should check that
the implications of doing so are valid.

Many DSGE models today, including MSM, include a unit root technol-
ogy process. This implies that co-integration exists between many of the real
variables. We re-formulated MSM as an SVAR with growth rates and error-
correction terms. This had the advantage that one could focus on error-correction
terms between observable variables rather than the unobserved technology level.
Using this reformulation it was possible to easily compare the properties of error-
correction terms in the model to those in the actual data.

Many DSGE models are used for policy analysis rather than forecasting and
this is true of MSM. It was suggested that a way of reporting results from
such a model which is potentially useful to policy makers is to present the
range of impulse responses from models that provide the same fit to the data.
This is a way to communicate the degree of model uncertainty that exists. It
demonstrated, for example, that in MSM the contemporaneous response in the
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external sector to a monetary policy shock in MSM is very large compared to
that from many equivalent models.

Finally, we looked at whether it would be possible to approximate the MSM
impulse responses with a SVAR. Here the complication is that there are variables
in the MSM that have no counterpart in the data used in its estimation, such
as foreign debt and the capital stocks in each of the sectors. We found that an
SVAR(2) in just the observable variables could do quite well in capturing the
responses. This suggests that one might reproduce many of the MSM results
with alternative types of models, provided they have a SVAR(2) representation.
This might be appealing as it could be easier to incorporate institutional features
of the Australian economy into these alternative models.

In summary, in this paper we have examined ways in which a DSGE model
can be assessed after estimation, focussing particularly on the nature of shocks
and what can be learnt from alternative representations of it.
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8 Appendix

8.1 VECM Representation of Domestic GDP Growth in
MSM

The expression for the growth in domestic GDP from the MSM model, omitting
variables whose coefficient is zero, is

∆yvat = .23∆yvat−1 − .015∆y∗t−1 − .007ξzxyt−1 − .01ξyxmt−1 − .015ξyxmt−2 −

.03πt−1 + .08ξct−1 − .171ξct−2 − .25ξvat−1 + .02qt−1 + .04p∗zt−1 − .088ξvant−1

+.11r∗t−1 + .033ξvazt−1 − .02πn
t−1 − .41rt−1 − .008π∗t−1 + .006ξit−1

−043ξit−1 − .019ξgt−1{−.22ỹ∗t−1 + .02πf
t−1 − .169b∗t−1 + .168b∗t−2 + (20)

086k̃m,t−1 − .063k̃m,t−2 − .082k̃z,t−1 + .062k̃z,t−2 − .094λz,t−1 +

.041λn,t−1 + .074λm,t−1} − .01εr,t − .0033εr∗t + .0005εft − .0004εmt

−.003εnt − .0015εm∗

t
+ .0004εy∗t + .0004επ∗t + .0009εΥt

+ .0005εamt

+.0007εant − .59µt + .001εazt + .0015εgt − .0007εψt + .0002εp∗t + .0008εξc,t

The terms in the braces are the unobserved variables.
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Abstract

Economy-wide models, particularly DSGE models, often contain variables which
are not observed in estimation. A finite-order VAR representation of the model may
not exist in the observed variables alone. This creates a VAR-truncation problem and
the impulse responses can diverge. This paper quantitatively examines the issue. It
is found to often not be important, and to reflect the omission of stock variables from
the VAR. Divergences in the impulse responses can occur absent the VAR-truncation
problem due to differing contemporaneous responses. We demonstrate that DSGE
models incorporate strong identifying restrictions which are seldom used to identify
SVAR models.

1 Introduction

Comparing impulse responses from differing models is a common form of model validation.
Structural Vector Autoregressions (SVARs) provide economic interpretations of the shocks
hitting the economy, but have relatively loose theoretical underpinnings compared to other
structural modelling approaches. Consequently SVAR models may be thought as poten-
tially being more aligned with the data. Their impulse responses are often used as a check
on whether more tightly-specified, larger, models are capturing the data adequately, e.g.
Brayton, Laubach and Reifschneider (2014, p.4) say, in the context of the Federal Reserve’s
FRB/US model, that “The responses of the output gap and inflation to a permanent in-
crease in multi-factor productivity are also in general accordance with estimates from the
VAR literature of the effects of technology shocks”.

But are such comparisons reasonable? Because a SVAR is relatively simple, and uses
less theory, a natural question to ask is whether it is indeed possible for a SVAR to closely
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Castelnuovo and Mariano Kulish for comments on an earlier version of this paper. Research Supported by
ARC Grant DP160102654.
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‡Melbourne Institute of Applied Economic and Social Research, University of Melbourne. E-mail:

tim.robinson@unimelb.edu.au.
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capture the responses of a model which represents the actual economy. We will refer to the
latter as the Target Model (TM), as they constitute the target for judging the success of the
SVAR. This question has been examined in the literature. For example, Chari, Keheo and
McGrattan (2005) and Christiano, Eichenbaum and Vigusson (2007), using DSGE models
as the TMs, reached conflicting conclusions; Chari et al. concluded that SVARs could not
capture the impulse responses, whereas Christiano et al. were more optimistic. Kapetanios,
Pagan and Scott (2007), using as the TM an economy-wide model that was a miniature
version of that used in the Bank of England in the 2000s, found a very high-order SVAR to
be necessary to precisely replicate TM’s impulse response functions.

The research question we focus on is assessing the ability of SVARs to “make a match”
with the TM’s impulse response functions and to ascertain the properties of the TM that
influence this. The strategy we adopt is to examine how close a match is made in a range of
TMs drawn from the literature which vary considerably in their characteristics. For example,
we consider models with and without nominal rigidities, closed and small-open economy
models, and those with just transitory shocks or a mix of transitory and permanent shocks.
This is different to much of the literature, which assesses the quality of the match for one,
or at most two, types of models.

Traditionally in simultaneous equation systems a distinction was made between endoge-
nous and exogenous variables. In their itemization of endogenous variables in the FRB/US
model Brayton et al. (2014) refer to a “core set of variables”. This distinction reflects
that many of the endogenous variables may be derivative from the core set of endogenous
variables, together with exogenous variables via identities. In FRB/US, for example, there
are 50 core variables, but around 375 variables in total. Essentially, there is a subset of the
variables which we focus on when analysing the properties of the model.

In estimation not all the core variables may be directly observed, that is, have a coun-
terpart in the actual data. Many variables will instead be latent.1 As an example, often
the exogenous variables will be latent simply because they are modelled as a shock following
a simple statistical process; this is typified by the treatment of world GDP in many small-
open economy models.2 When assessing how well a match can be made between the impulse
response functions of the SVAR and the TM, we will focus on the responses of the observed
variables.

There are two dimensions to making a match. The TMs considered are linearised, and
their solution in terms of the core variables and exogenous innovations will be a SVAR(p).
The impulse response at the j′th horizon from the TM will reflect both its contemporaneous
responses and the dynamics of the model (i.e. its VAR coefficients).3 However, a researcher

1One might argue that a recent practice of adding “measurement errors” on to a model variable to match
the data means that all variables are latent. There are difficulties with using measurement errors in TMs
that have been set out in Pagan (2017). We will keep to the division of core endogenous variables into
observable and latent variables by not allowing for measurement error.

2Latent variables, however, may be indirectly observable as the observed data and the model together can
be used to produce an estimate of them. Examples would be either an output gap or a flexible-price (hereafter
flex-price) equilibrium. For convenience, however, we will refer to the latent variables as unobservable since
one needs a model to measure them and there are no direct observations on them.

3This reflects the fact that the k′th period ahead impulse responses of zt to εt from a SVAR(p), denoted
by Ck, can be found recursively using Ck = B1Ck−1 + ...+BpCk−p, with C0 the matrix of contemporaneous
responses and where Bj are the VAR coefficients.
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wanting to compare these responses of the TM to a SVAR can only estimate a possibly
lower-order SVAR(q) in the observed variables alone. Like the TM, the impulse responses
at the j′th horizon from the SVAR(q) are a function of its contemporaneous responses and
the dynamics of the model. So the quality of the match is influenced by both how the
contemporaneous responses differ between the TM and the observables-SVAR, and how
the VAR dynamics differ across the models. The latter is generally described as the VAR
truncation error and is what most of the literature examines. It arises as the observed
variables are only a subset of the core variables. Essentially, there is a misspecification due
to missing latent variables, although this may be ameliorated by using a higher-order SVAR.
The question is how important such misspecification is for a SVAR with a lag length typical
of applied macroeconomic work - i.e. how much distortion in the estimated impulse responses
does the truncation produce? And are there particular model characteristics associated these
distortions?

Section 2 looks at the question of whether the VAR underlying the TM can be well
approximated by a VAR in the observed variables using 2 lags. Three examples are chosen
from the literature to examine what model characteristics influence the extent of truncation
error and to illustrate several points. The first example is of a basic Real Business Cycle
(RBC) model with just a technology shock. In this model the core observed variable is
taken to be a flow (output) while the latent core variable is a stock (capital). Its simplicity
highlights one of the most common issues relating to approximation of the dynamics, namely
the omission of stock variables. This issue arises as most SVARs are only formulated with
flow variables. In this context it is found that a very low-order VAR provides an excellent
approximation to the TM.

What are the consequences of omitting stock variables on the ability to make a match in
larger models? The second example in Section 2 uses a small-open economy DSGE model
due to Justiniano and Preston (2010). There is one unobserved stock variable - the level of
external debt. Unlike the simple RBC model case, some of the impulse responses do differ
when using just observable variables. The reasons for this are discussed; of particular note
is the fact that a risk premium depending on the external debt position is a common way
of closing a small-open economy DSGE model and the omission of the stock of debt in the
SVAR diminishes the strength of this mechanism.

Finally, in Section 2 we examine the canonical New-Keynesian model of the US economy,
Smets and Wouters (2007). Here the unobserved variables are the two stocks of capital (the
actual value and that from a flex-price economy used to construct potential output) and the
price of capital. When examining this model Liu and Konstantinos (2012, p.89) found that
“ ... the truncation bias is the dominant source of the bias in the estimated impulse response
functions”. We find that such divergences between the impulse responses are lessened a great
deal when the monetary policy reaction function is re-specified so that it does not depend
on the flex-price gap and its difference, but rather the disequilibria in the actual economy.
This alternative specification is common in many estimated DSGE models.

Today TMs often include permanent shocks - typically the log of technology - with
transitory disturbances, such as monetary policy shocks. These permanent shocks result in
unit roots being present in many of the variables, and so the latter will have a common
permanent component. Consequently these TMs involve co-integration between the core
endogenous variables and an exogenous latent variable. We discuss the two problems that
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can arise in the SVAR approximation in this instance.
The first problem reflects the fact that DSGE models with permanent shocks are usually

estimated using the first differences of the I(1) variables and the levels of the stationary
variables. A researcher, however, estimating a SVAR formulated in these observed variables
would encounter a specification error. This specification error arises because the SVAR
in observables ignores the fact that the I(1) variables are driven by latent error-correction
(EC) processes. An alternative would be to instead estimate a latent-factor structural Vec-
tor Error-Correction Model (VECM). The second problem encountered is the presence of
unobserved stock variables.

We examine three TMs that exhibit one or both of these problems. The first is the model
by An and Schorfheide (2007), where a close match is found between the impulse responses
from their TM and a VAR(2). A second choice is the simple RBC model examined in Poskitt
and Yao (2017). In their paper it was found that the impulse responses of the observable-
variables SVAR departed in a major way from the TM’s. Some of this discrepancy is a
problem with their graphical display of responses, but one of the responses does show a
significant difference. We explain why a difference arises in this instance, and not in the An
and Schorfheide (2007) model.

The final paper with permanent shocks considered is Erceg, Guerrieri and Gust (2005).
They found that a finite-order VAR in the observable variables could recover impulse re-
sponses accurately when the TM used had an RBC orientation, but not when sticky prices
were present. We argue that, while the introduction of sticky prices increases the order of
the VAR, this is not the source of the approximation problems. Rather, these arise from the
simultaneous introduction of variable capital utilisation into the model. Variable capacity
utilisation changes the nature of capital services since it involves both a utilization rate and
a capital stock. Only one of these variables can be substituted out of the model, leaving
one unobserved, which increases the truncation error. An implication of this is that data on
capital utilization may be an important variable to be included in a VAR if it is a property
of the TM.

In general we find that the truncation issue may not be that important if the variables
of the VAR are carefully chosen and it might also be ameliorated by using latent-variable
VARs.

In the analysis of section 2 and 3 it is assumed that the contemporaneous impulse re-
sponses from the SVAR are identical to those from the TM. This was done so as to focus
solely on the extent of truncation error, and is a strategy used by Kapetanios et al. (2007)
and Ravenna (2007). However, differences between the contemporaneous responses of the
TM and SVAR would also influence the ability to make a match. Put another way, it is
possible to get differing impulse responses from the SVAR and the TM even though the VAR
approximates the dynamics of the TM quite well. The specification of the contemporane-
ous impulse responses is essentially an issue arising from the definition of structural shocks.
Section 4 therefore considers this final dimension for making a match, and the difficulties in
doing so with just the observable data. Fundamentally, the difficulty is that researchers with
a SVAR in the observable variables often seek to have a great deal of flexibility in dynamics,
and this can create problems when trying to estimate the contemporaneous responses con-
sistent with the TM because the identification restrictions embodied in some TMs are not
often used in the SVAR literature. Finally, Section 5 concludes.
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In summary, the focus of this paper is to assess the ability of a SVAR in the observable
variables to make a match with the impulse responses from a TM. A variety of TMs are
considered from the literature with differing characteristics. In general it is found that a
reasonable match may be obtained, with divergences often primarily occurring not due to
differing dynamics between the models but due to the identifying restrictions required to
measure the shocks.

2 What are the Issues in Approximating a TM with

an Observable-Variables SVAR? The I(0) Case

2.1 Analysis

This section provides some simple analysis to illustrate the issues that can arise when ap-
proximating a TM with a SVAR in the observed variables alone.

Historically all variables in DSGE models were taken to be I(0), so we start with an
analysis of the VAR implied by the TM in this case. Let zt be the core endogenous and
exogenous variables in a TM. In most instances the TM has the structural equations4

A0zt = CEt(zt+1) + A1zt−1 + ut, (1)

where ut are shocks possibly following a VAR(1), ut = Φut−1 + εt, and εt is a vector of
white noise processes with covariance matrix Ω that is diagonal. This system can then be
solved for zt by using (for example) the method of undetermined coefficients. This produces
a solution5

zt = Dzt−1 +Gut. (2)

Equation (2) is what we will call an incomplete VAR since it requires a specification for the
exogenous shocks ut. Mostly these are taken to be autoregressive (AR) processes. Conse-
quently, using ut = Φut−1 + εt we get the complete VAR

zt = Dzt−1 +GΦut−1 +Gεt

= Dzt−1 +GΦG+(zt−1 −Dzt−2) +Gεt

= (D +GΦG+)zt−1 −GΦG+Dzt−2 +Gεt

= B1zt−1 +B2zt−2 + C0εt, (3)

where G+ = (G′G)−1G′ if there are not more shocks than variables.6

4There are very few TMs that cannot be written in this way. If the model equations have more than one
lag in variables then we would need to expand zt in Equation (1) to contain lagged variables. The analysis
would still proceed in the same way but it would be necessary to select the current values of variables from
the augmented zt vector.

5See Binder and Pesaran (1995). The conditions for the solution are twofold: a rank condition and the
Blanchard-Kahn stability conditions must be satisfied (Blanchard and Kahn 1980). Users of Dynare will be
familiar with the program checking these conditions.

6If the shocks ut follow a moving average process (as in Smets and Wouters 2007) then the observable
variables will follow a Vector Autoregression Moving-Average (VARMA) process.
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This latter equation will be referred to as a semi-structural VAR(2) (SSVAR(2)) in the
sense that the dynamics are described by a VAR while the VAR disturbances are et = Gεt =
C0εt . The contemporaneous response of zt to the structural innovations εt, is C0,. In
sections 2 and 3 we are going to set C0 for the SSVAR in observables to that from the TM.
It is clear that once C0 is given then the SSVAR is the same as a VAR and an SVAR, and
so we will sometimes use these terms interchangeably. It is often convenient to work with
the incomplete VAR in Equation (2); at other times the complete VAR in Equation (3) is
preferable. .

The problem in practice is that not all of the variables in the TM, zt, are observable
and SVAR models are traditionally specified in terms of observed variables alone. Hence, we
partition zt into those that are observed, zot , and unobserved, zut . In this case the incomplete
VAR, Equation (2) can be written as7

zot = Dooz
o
t−1 +Douz

u
t−1 +Gout (4)

zut = Duoz
o
t−1 +Duuz

u
t−1 +Guut. (5)

In what follows we will assume that ut = εt i.e. Φ = 0. If this was not the case then we
would just add zot−2 and zut−2 to the equations but the method now described is unchanged.

In most TMs the number of shocks equals the number of observed variables. In that case

εt = G−1o (zot −Dooz
o
t−1 −Douz

u
t−1),

and so

zut = Duoz
o
t−1 +Duuz

u
t−1 +GuG

−1
o (zot −Dooz

o
t−1 −Douz

u
t−1) (6)

= F1z
o
t + F2z

o
t−1 + F3z

u
t−1 (7)

=
∞∑
j=0

Hjz
o
t−j, (8)

where F1 = GuG
−1
o , F2 = (Duo−GuG

−1
o Doo) and F3 = (Duu−GuG

−1
o Dou). This demonstrates

it is possible to recover the unobserved variables from the observed variables using their
contemporaneous values and enough lags.

How many lags are enough to approximate the TM in terms of the observable variable
alone? This depends upon the magnitude of the Hj− which depends on the eigenvalues of
F3. In the case where the latent variables are zut stocks there is the potential that one might
need a large number of lags of the observed variables in order to capture the unobserved.

Substituting Equation (8) into Equation (4) one gets

zot = Dooz
o
t−1 +Dou(

∞∑
j=0

Hjz
o
t−j) +Goεt

If we choose only a VAR(2) in observables then the term ψt = Dou

∑∞
j=3Hjz

o
t−j will be

excluded from the regression used to fit it Consequently, when {zt−k}2k=1 and ψt are uncor-
related then there will be no bias in the estimated coefficients of {zot−k}2k=1. Nevertheless, the

7Note that we have not solved for the complete VAR as the error term in this form is ut and not εt. But,
as shown previously in Equation (3), converting to a VAR that has εt only raises the order of the VAR by
one.
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impulse responses to the shocks εt would be incorrect because of the omission of the higher-
order lags in zot from the system when impulse responses are computed. When the variables
are correlated there is also a bias in the estimates of the coefficients of {zt−k}2k=1. Hence the
misspecification has two effects which will depend upon the magnitude of Hj (j = 3, ...) and
the correlation of {zt−k}2k=1 with ψt.

A problem is that the magnitude of both of these effects will be model dependent. Our
strategy is to examine a range of models from the literature so as to gain an indication of
the cases where they can affect the possibility of ”making a match” of the impulse responses.
Indeed, we will see that, even where it seems that the unobserved variables can be recon-
structed from the observed variables - since the R2 from regressing zut on zot , z

o
t−1 is greater

than .95 - the term left out of the approximation
∑∞

j=3H3z
o
t−j can lead to a large bias in the

estimated dynamics of the VAR(2) in zot .
8 It is not enough to have an R2 from this regression

close to unity.

2.2 Illustration: A Simple Real Business Cycle Model

To demonstrate the results mentioned above suppose we take the basic RBC model in Uhlig
(1999) as the TM. This has the equations (where investment has been substituted out)

lt = yt − ct (9)

C∗

Y ∗
ct +

K∗

Y ∗
kt = yt + (1− δ)K

∗

Y ∗
kt−1 (10)

ct = Et(ct+1 + rt+1) (11)

R∗rt = α
Y ∗

K∗
(yt − kt−1) (12)

yt = (1− α)at + αkt−1 + (1− α)lt (13)

at = ρaat−1 + εat . (14)

Here small letters represent log deviations from steady state, * are steady-state values, ct
is consumption, kt is the capital stock, rt is the gross real rate of return, at is an AR(1)
technology shock with parameter ρa, and lt is labour input. The parameters are set to
α = .4, δ = .025, ρa = .9, R∗ = .99, and the steady-state values are functions of these
parameters. The core observed endogenous variable will be taken to be output and the
latent variable that is the capital stock. Given these ct and lt can be substituted out. The

8A popular approach has been to write the system in state-space form, separating the state and observed
variables - the ABCD representation - before finding the conditions for a finite-order VAR representation
(Fernández-Villaverde, Rubio-Ramı́rez, Sargent and Watson 2007). This approach was adopted by Ravenna
(2007), Franchi and Vidotto (2013) and Morris (2016). Giacomini (2013) gives a survey of the literature
emphasizing the ABCD representation and the conditions for a finite-order representation. The focus of
our analysis is not about finding such conditions. Rather our focus is to point out that in many models
a high-order VAR may not be needed to capture impulse responses from a TM, at least for the horizons
which are of the greatest interest to policy makers. Furthermore, we examine which characteristics of the
TM influence the quality of the match. One difference between the ABCD representation and ours is that
the shocks in Equations (4) and (5) are left as ut rather than the innovations εt as in the ABCD approach,
since there is no need to describe the nature of ut when considering the impact of omitted variables.
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exogenous variable is at. The equivalent of Equations (4) and (5) for the RBC model are

yt = .133kt−1 + 1.21at (15)

kt = .95kt−1 + .094at. (16)

The true impulse response function of yt to εat from the RBC model solution and that from
an AR(2) in yt are very close, leading to the question of why it is not necessary to know the
latent capital stock in this case.9 The value for F3 for the solution to the RBC model suggests
that extraction of a good measure of the capital stock from output data would require many
lags of that variable; indeed regressing kt against yt, yt−1 and yt−2 gives an R2 = .56, which
increases to .95 when there are 20 lags of yt. This indicates that to reconstruct the latent
capital stock with observed output alone requires many lags. However, once the unobservable
capital stock has been written as a function of the observable yt, the AR equation for yt is

yt = Dou(I − F3L)−1F1yt−1 + 1.21at

= .133× .0777×
∞∑
j=0

(.94)jyt−1−j + 1.21at

= .01yt−1 + .0097yt−2 + .00913yt−3 + .0086t−4 + ....+ 1.21εat ,

It is evident that any bias in dynamics from omitting .00913yt−3 + .0086t−4 + ... from
the AR(2) regression will be small. In fact, the regression of .00913yt−3 + .0086yt−4+... on
yt−1 gives a coefficient of .023. Even an AR(1) in yt will capture the RBC model impulse
response very well. Thus, even very high values of F3 do not preclude a low-order VAR from
providing a good approximation to the impulse responses from the TM. This is a reflection
of the small values of F1 and Dou for the RBC model.

There are many variants to the basic RBC model above that have appeared in the
literature. One of these adds a second shock; for example, a preference shock. As there are
now two shocks, an additional observed variable can be added (so as to make the number
of shocks and observed variables equal). We will now assume that the observed variables
are yt and lt. Then the capital stock at the beginning of t, kt−1, can be found through the
production function by combining these core variables and the exogenous level of technology
at Hence by careful choice of the observed variables the capital stock no longer appears as
an unobserved variable and can be eliminated from the core variables. In this case a VAR(1)
in the core observable variables yt and lt will exactly reproduce the impulse responses of the
TM. This will be seen in later examples.

2.3 Illustration: The Justiniano-Preston (2010) Model

The important role of stock variables in influencing the ability to make a match between
the impulse responses is also evident in small-open economy models. Justiniano and Preston
(2010) present a small-open economy DSGE model that has thirty-four endogenous variables
and twelve shocks. Twelve variables were taken to be observable - domestic output, an

9Equating Equations (15)-(16) with (4)-(5) we have Duu = .95, Dou = .133, Duo = Doo = 0, Gu = .094,
and Go = 1.21, leading to F1 = .0777, F2 = 0, and F3 = .94.
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interest rate and inflation (yt, it and πt respectively), and their foreign counterparts, - denoted
by an ∗ - the nominal and real exchange rates (st and qt), real wages (wt and w∗t ) and hours
(ht and h∗t ). Its solution is a SSVAR(2). An example of one of the equations coming from
using the Justiniano-Preston (2010) model as the TM is that for output, namely

yt = 1.49yt−1 − .52yt−2 − .026y∗t−1 + .017y∗t−2 − .032i∗t−1 + .036π∗t−1 (17)

−.0004π∗t−2 + .004w∗t−1 − .001w∗t−2 + .003h∗t−1
+.241it−1 − .06qt−1 + .06qt−2 − .22πt−1 + .004πt−2 − .04wt−1

+.018wt−2 − .024ht−1 − .04st−1 + .036st−2 − .0001Bt−1 + eyt,

where the VAR error eyt, is a function of the structural shocks

eyt = −.034εat − .011εa
∗

t + .17εgt + .042εg
∗

t − 1.495εit + .094εi
∗

t (18)

+.09εcp
∗

t − .386εcpht − .022εcpft + .0002εnt + .00005εn
∗

t + .65εrpt .

In Equations (17) and (18) the structural shocks are for preferences (εgt , ε
g∗

t ), technology
in both economies (εa

∗
t , ε

a
t ), monetary policy (εit and εi

∗
t ), cost push shocks in the foreign

economy and to the foreign and domestic goods in the domestic economy (εcp
∗

t , εcpht , εcpft
respectively), labour supply (εnt and εn

∗
t ) and the risk premium (εrpt ). Even though there

are thirty-four endogenous variables in the DSGE model twenty-one can be substituted out
through identities, leaving just thirteen for the core set. This results in a single unobserved
variable, the level of net foreign assets (Bt). This is the only stock variable in the TM as
capital is not included in the model.

Equation (17) is an identity and is a SSVAR. Hence, even though it is not a structural
equation, it contains information about the impact of structural shocks. Specifically, the
contemporaneous impulse response matrix C0 can be computed from the coefficients attached
to εt in Equation (18). Thus the contemporaneous impact of a monetary shock on output is
-1.495.10

Figure 1 presents the impact of a domestic monetary shock upon inflation using the
SSVAR(2) with all variables from the TM as well as one with just the observable variables.
There is very little difference in the responses. Figure 2 shows the response of the real
exchange rate to the monetary shock and, again, the two responses are similar. The responses
of the real exchange rate and output to risk premium shocks (not shown) are also very close.

In contrast, Figure 3 shows the response of output to the domestic technology shocks;
in this case there is a difference, especially as the horizon lengthens. In particular, it takes
far longer for the observable-variables SSVAR estimates of the responses to die away. This
pattern can be seen in a number of other impulse responses, such as the response of the real
exchange rate to technology shocks. Essentially, in relation to real shocks, such as technology,
the complete system returns to the steady-state position much faster with the “all variables”
SSVAR than for an SSVAR which omits foreign asset balances.

The logic for this failure to make a match is that the accumulation of debt is important
for ensuring that the real exchange rate so that debt converges to its steady state. The

10In all the work of this paper data was simulated from the TM and then the identity governing the
evolution of variables was found by fitting a regression.
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Figure 1: Response of Inflation to a Monetary Shock Response of Inflation to a Monetary
Shock for SVAR(2)s Fitted to Justiniano-Preston Model Output with All and with just
Observed Variables

inclusion of a debt-elastic premium is a common way of closing small-open DSGE models;
see Schmitt-Grohe and Uribe (2003) for a discussion of the methods of inducing such a
stabilizing mechanism. Without such a mechanism - and it will be absent in an SVAR
that does not include debt - we would expect that convergence to any steady state will be
far slower, and might not even occur. Indeed, it is instructive to note that the estimated
dynamics of the VAR equation for the real exchange rate change markedly when debt is
included in the system to when it is omitted. This suggests that debt is highly correlated
with the included variables and this is the case - regressing debt on the observable variables
produces an R2 of .99. Consequently, omitting debt from the system will produce biased
estimates of the dynamics.

This result sheds light on the findings of Kapetanios et al. (2007), who studied a small-
open model of the type used by Justiniano and Preston (2010) as their TM. Kapetanios et
al. concluded that one needed a VAR of order 50 and 30,000 observations to capture the
responses. They also found that it took much longer to return to the steady state. The
TM contained 26 variables, but only 6 were taken to be observed. Foreign assets were not
observed, and our results suggest that will have been an important factor contributing to
the difficulties they encountered in making a match.

In all, it appears that the latent level of debt in SVARs of small-open economies is very
likely to be an issue in getting a correct measure of the dynamics of real shocks at longer
horizon with the SSVAR in the observable variables, and so every effort should be made
to include such a variable into small-open economy SVARs. If it is difficult to measure the
debt variable one possibility might be to include both absorption and domestic output as
observed variables in the VAR, and to then treat debt as a latent variable that reacts to
these observable variables. The difference between absorption and domestic output captures

10



Figure 2: Response of the Real Exchange Rate to a Monetary Shock for SVAR(2)s Fitted
to Justiniano-Preston Model Output with All and with just Observed Variables

Figure 3: Response of Output to a Domestic Technology Shock for SVAR(2)s Fitted to
Justiniano-Preston Model Output with All and with just Observed Variables
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the current account balance and hence the evolution of the stock of debt.

2.4 Illustration: The Smets and Wouters (2007) Model

Smets and Wouters (2007) (SW) is a New-Keynesian model of the United States economy
which has been extensively used in the literature, and adopting it as the TM provides
extra insights into the relationships between the different modelling approaches. It has a
large number of endogenous variables (twenty-four) but only seven shocks and observable
variables. In its original form the mark-up shocks in the Phillips curves are ARMA processes
so, by definition, the solution will not be a finite-order VAR. However, in this section we
replace those ARMA terms with standard AR processes. Fourteen endogenous variables
can be substituted out using identities, implying that the SW model can be reduced to a
SSVAR(2) in ten core endogenous variables.

In the SW model seven of its ten core variables are directly observed, namely the logs of
output yt, consumption ct, investment it, hours ht, inflation πt, wages wt and the interest rate
rt. This leaves only three unobserved endogenous variables - capital kt, the flex-price level of
capital kft, and the price of capital pkt. The production function in Smets and Wouters has
capital services in it, which can be found from output, hours and technology. However, these
are allowed to vary with utilization of the the lagged capital stock. Consequently, either the
capital stock (or the utilization rate) are not observable and will be a latent core variable.

We expect F3 in Equation (7) to have at least two large eigenvalues, reflecting the unob-
served capital stocks. To assess the ability to proxy these latent variables with the observed
data we regress kt, kft and pkt against two lags of the observable variables and obtain R2

values of .96, .53 and .08 respectively, indicating that it varies considerably. Offsetting this,
however, is the fact noted previously that a low R2 would mean less of a bias in the parameter
estimates when the latent variables are omitted in the estimation of the VAR.

The effects of monetary shocks upon inflation are shown in Figure 4 and, just as for the
Justiniano-Preston model, these are little affected by the use of a VAR in the observable
variables alone. In a similar vein, real shocks do have different response functions, as seen
in Figure 5 for output and the technology shock, but by far less than was apparent in the
Justiniano-Preston model. It is notable that the observable-variables VAR now has impulse
responses which converge to zero much faster than the TM. The reason for this is that much
of the persistence comes from the omitted stock variables. Unlike the case of foreign debt,
capital stocks do not act as a stabilizing device but rather make the adjustment longer. The
impulse responses for the level of output to what Smets and Wouter term an “exogenous
spending shock” are shown in Figure 6 and, as noted in Liu and Konstantinos (2012), there
is a relatively large discrepancy between those from the TM and a SVAR(2) in observable
variables.

To explore these results further we note that the sole place the flex-price variables enter
the sticky-price economy is through the Taylor rule, which in SW depends on a flex-price
measure of the output gap, (yt − yft). This is the only reason for kft, which is latent,
appearing in the solution to the model. While theoretically founded, in many applied models
the interest rate is instead related directly to yt, the log deviation of output from its steady
state. Hence we convert the SW model to one with such a Taylor rule. Figures 7 and 8 show
the same impulse responses as in Figures 5 and 6 omitting the flex-price terms and therefore
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Figure 4: Response of Inflation to a Monetary Shock for SVAR(2)s Fitted to Smets-Wouters
Model Output with All and with just Observed Variables

Figure 5: Response of Output to a Technology Shock for SVAR(2)s Fitted to Smets-Wouters
Model Output with All and with just Observed Variables
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Figure 6: Response of Output to a an Exogenous Spending Shock for SVAR(2)s Fitted to
Smets-Wouters Model Output with All and with just Observed Variables

Figure 7: Response of Output to a Technology Shock for SVAR(2)s Fitted to Smets-Wouters
Model (With no Flex-Price) Output with All and with just Observed Variables
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Figure 8: Response of Output to a an Exogenous Spending Shock for SVAR(2)s Fitted
to Smets-Wouters Model (With no Flex-Price) Output with All and with just Observed
Variables

decreasing the number of latent variables. The observable-variables SSVAR(2) responses are
now much closer to those for the TM. Interestingly, monetary policy shocks have similar
impulse responses for either variant of the TM. So the inclusion of the flex-price output gap
in the Taylor rule in SW plays an important role in limiting the ability of a VAR to make a
match.

3 Truncation Bias when the TM and Observable Vari-

ables SVAR Contain Cointegration

3.1 Analysis

Traditionally the decision rules in TMs have been log-linearized prior to estimation. This
approximation is done about the steady-state, so effectively the variables are expressed rel-
ative to their steady-state value. An example is a consumption Euler equation with log
utility, namely C−1t = βEtC

−1
t+1Rt+1, where Ct is the level of consumption, β the discount

factor and Rt is a real interest rate. Written in terms of variables normalised relative to their
steady-state, namely C∗ and R∗, the Euler equation is ( Ct

C∗ )−1 = βR∗Et(
Ct+1

C∗ )−1Rt+1

R∗ .
It has become increasingly common for TMs to include permanent shocks. An example

is if the log-level of technology, at, is assumed to follow a unit root. In this case a different
normalisation, rather than a fixed steady-state level, has to be used to reflect that the
economy has a long-run growth path. In this example the divisor would be At ≡ exp(at), and
the normalised consumption Euler equation would be (Ct

At
)−1 = βR∗Et(

Ct+1

At+1
)−1(At+1

At
)−1Rt+1

R∗ .
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Then, after log-linearization, it becomes

ct − at = Et[ct+1 − at+1 + ∆at+1]− Etrt+1 + ln r∗,

where the lower case letters represent the logs of the upper case ones. Furthermore, many
modern TMs additionally allow for persistence in technology growth, i.e.

∆at = ρa∆at−1 + εat.

This is particularly the case for models used in a policy environment.
Under such a specification Et∆at+1 = ρa∆at, making the linearized consumption Euler

equation:
ct − at = Et[ct+1 − at+1] + ρa∆at − Etrt+1 + ln r∗.

It is apparent that the inclusion of a permanent technology shock results in some variables
in these models being I(1) and co-integrated. An example of co-integration is between ct and
at since ct − at is I(0). All the model variables which are I(1) are expressed as deviations
from at, a process often referred to as “stationizing”. Thus, in terms of the RBC model of
the previous section, if at was a unit root process, we would have variables yt − at, ct − at
etc.. These variables are then I(0) and represent the error-correction (EC) terms. The
consequence is that there is co-integration between the three variables yt, ct, and at. These
EC terms would be present among the core model variables, zt, and, after the TM is solved,
there will be a VAR in zt.

The VAR in zt will contain observed and unobserved variables as before. However, in
this case the “stationized” variables yt − at etc. (denoted with a superscript S), while not
directly observed, may be related to the observed data. As an example, let ∆ct be observed
data on consumption growth. Then

∆ct = ∆(ct − at) + ∆at = ∆cSt + ∆at.

In contrast, there can be some other stationized variables that do not relate directly to data
and which require a model for their construction, such as the capital stock when there is a
variable utilization rate. With the first type of variable it is necessary to add a statistical
specification for the latent exogenous process at, but that does not require an economic model.
Alternatively, to re-construct the capital stock when there is a variable utilization rate we
do need such a model.

3.2 Illustration: The An and Schorfheide (2007) Model

To fix these ideas, we consider a model with a permanent technology shock that has become
a workhorse for such analysis. Specifically we take the An and Schorfheide (2007) model
which was analyzed in Giacomini (2013) and Morris (2017). Here yt is the log of output, ct
the log of consumption, πt inflation, rt the interest rate and gt a fiscal variable. There are
three shocks in the model, namely technology, εa,t, fiscal, εg,t, and monetary policy, εr,t. The
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TM has the equations:

ySt = Et(y
S
t+1) + gt − Etgt+1 −

1

τ
(rt − Etπt+1 − Et∆at+1)

πt = βEt(πt+1) +
τ(1− ν)

$π2φ
(ySt − gt)

cSt = ySt − gt
rt = ρrrt−1 + (1− ρr)ψ1πt + (1− ρτ )ψ2(y

S
t − gt) + ρrεr,t

∆at = ρa∆at−1 + σaεa,t

gt = ρggt−1 + σgεg,t

ySt = yt − at.

We begin by examining the VAR representation of the solution of the TM in terms of
the stationized variables. Assuming that ySt , πt and rt are the core endogenous variables
in the TM, the system can be simplified by recognizing that cSt is a function of ySt and the
exogenous variable gt, so it can be substituted out. The resulting solution is a VAR(1) in
ySt , πt and rt.

The observable variables used for estimation, however, are not the stationized variables,
ySt , πt and rt but ∆yt, πt and rt. It is clear that the TM implies that there will be co-integration
between yt, ct and at.

Adopting the parameter values from Giacomini (2013), the solution for the TM is the
SSVAR(1)

ySt = .95ySt−1 − .5πt−1 + .1945rt−1 + .0037εat + .006εgt − .0019εrt
πt = .616πt−1 − .114rt−1 + .0037εat − .0012εrt
rt = .776rt−1 + .308πt−1 + .0018εat + .0013εrt .

However this involves the latent variable ySt and so it is not a VAR in the observable variables
alone. What is observed instead is ∆yt, so we need to ask whether ∆yt, πt and rt follow a
SSVAR?

Using the measurement equation

∆yt = ∆ySt + ∆at, (19)

and the relation between πt, at and rt of πt = 1.79∆at − .92rt, the solution for ∆yt can be
expressed as

∆yt = .0018πt−1 + .6568rt−1 − .05ySt−1 + .0067εat + .006εgt − .0019εrt . (20)

That is, it is an equation from a VECM that has ySt−1 as the lagged error-correction term.
Consequently, if the system is expressed as a SSVAR in just the observable variables, the
term −.05ySt−1 would be ignored and this would be a specification error.

This analysis demonstrates the fact that a SSVAR in observable variables will rarely be
the appropriate way to proceed if data is generated by a TM with non-stationary technology.
For example, if one thought of the SW model as having a unit root in technology, then there
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would be stationized variables such as (yt − at), (ct − at), (it − at) etc..11 These could be
transformed to (ct− yt), (it− yt) and (yt−at), but there will always be one unobservable EC
term that would be missing from an observable-variable VECM.12

How important is the specification error of ignoring the EC term represented by ySt−1? In
this case it will depend on the relative variances of −.05ySt−1 and .0067εat + .006εgt − .0019εrt .
The latter is some ten times the former and so we might expect that there will only be a
small difference between the impulse responses from the observable-variables SSVAR and
those from the TM. If one fits a MA(1) to the equation that has ∆yt as dependent variable
and ∆yt−1, rt−1 and πt−1 as independent variables the MA coefficient is -.06, showing that
there is only a small degree of serial correlation in the residuals of the SSVAR(1) equation for
∆yt. Consequently, if a SSVAR(2) is fitted to the observable variables this could be expected
to capture quite accurately what MA error there is in the equation. Figure 9 demonstrates
this is the case. It shows the cumulative impact of a technology shock upon the level of
output for both the TM and SSV ARobs(2) models. It is only when the horizon is very long
that one sees small differences.13

The underlying logic is that a small coefficient on the error-correction term means that
one can omit that regressor from the ∆yt equation with little effect and so the SSVAR
in observable variables alone will be close to the correct representation.14 Accordingly, a
reasonable rule of thumb is that when the EC term coefficient is small we can work with
a VAR in differences for the I(1) variables and get a good approximation to the impulse
responses.

Essentially we are dealing with a SSVECM model which has yt−at as an error-correction
term. Its omission in the observable-variables SSVAR is a misspecification, which might be
avoided by fitting a finite-order latent factor VECM which includes ySt−1 in the ∆yt equation.
In order to estimate such a system all that is required is a statistical assumption about the
exogenous variable ∆at, akin to that in the TM.

3.3 Illustration: The Poskitt and Yao (2017) Model

A RBC model with technology following an I(1) process is taken as the TM by Poskitt and
Yao (2017).15 They have two core observed variables - output, yt, and hours, ht− as well as
a latent variable, the capital stock. The capital stock, however, can be substituted out using
the production function, the observed variables and the exogenous technology process, at.
Consequently, the only core endogenous latent variable is stationized output, ySt .

The TM is a SSVAR(1) in ySt and ht, as was found for the An and Schorfheide (2007)
model. When expressed in terms of the observable variables, ∆yt and ht, a latent variable
SSVECM(1) is obtained with the form

∆yt = −.01ht−1 − .18ySt−1 − 1.56εht + .96εat (21)

ht = .93ht−1 − .24ySt−1 − 2.4εht + .48εat . (22)

11Such a model was considered by Del Negro, Schorfheide, Smets and Wouters (2007).
12The presence of an unobserved EC term was also discussed in Liu, Pagan and Robinson (2018) in the

context of the Rees, Hall and Smith (2016) model.
13As in the previous models monetary policy impacts on inflation are close for both models.
14The EC term does not appear in the other two equations.
15Ravenna (2007) studies the same TM.
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Figure 9: Cumulative Responses of Level of Output to a Technolgy Shock for the An-
Schorfheide Model for the Observable-Variable SVAR(2) and DSGE Model

Again, a SSVAR in the observable variables alone, omitting ySt−1, would be misspecified.
To judge the consequences of the misspecification, just as for the An and Shorfheide (2007)

model we compare the relative variances of -.18ySt−1 and (−1.56εht + .96εat ) in Equation (21).
The ratio is .33, rather than 9.6 for the An and Schorfheide model, and therefore we would
expect a larger bias in the estimated dynamic coefficients in the Poskitt-Yao model.

We can further analyse this bias. Regressing ySt upon {ht−j,∆yt−j}Mj=1 in the Poskitt and
Yao case we find an R2 of .7 when M = 2. A higher number of lags, namely M = 50, is
needed in order to be able to reconstruct the latent variable from the observable variables. As
there is a high correlation between ht−1 and ySt−1, there will be a bias in the estimates of the
coefficient on ht−1. Omitting ySt−1 from Equation (21) yields an estimate of .097 (compared
with -0.01), while for Equation (22) it produces .83. Since it is the magnitudes of the
estimated coefficients that matter for the impulse responses, the impact of shocks on ∆yt will
die out very quickly, even when there is a bias in the estimates, whereas for ht the difference
in the parameter values in Equation (22) for ht−1 (.93 and .83) results in a substantial
difference in the persistence. The impulse responses are shown in Figures 10 and 11.16

Figure 10 is much the same as in Poskitt and Yao (2017). The difference between the
responses is due to bias in the ht−1 coefficient estimate.17 However, Figure 11 is very different
to what Poskitt and Yao (2017) report. The reason seems to be a computational problem in
their graphical output. In their graph there is a big difference between the impulse responses
when the latent variable is present and when it is absent, whereas Figure 11 shows that there
is almost no difference.

16When we fit a VAR(2) in ∆yt and ht the equation for ht has coefficients of .94 and -.1 and so for the
first few impulse responses there is little difference between the two sets of impulse responses.

17To see this, note that after 20 periods ahead we find that the ratio of (.93/.83)20 is around 12, which
agrees with the figure.
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Figure 10: Impulse Response of Hours to a Technology Shock Using the TM of Poskitt and
Yao and a VAR(2) in the Observable Variables

Figure 11: Impulse Response of Growth in Output to a Technology Shock Using the TM of
Poskitt and Yao and a VAR(2) in the Observable Variables
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3.4 Illustration: The Erceg et. al (2005) Model

Erceg et al. (2005) study the ability of VAR models to match the impulse responses for
technology shocks from a DSGE model. They consider two different DSGE models, both
containing a permanent technology shock. The first is referred to as the RBC version and
in this case they find that the VAR representation exhibits very little truncation error. In
the second case nominal rigidities are introduced, amongst other changes, and in this case
truncation error occurs.

A four variable VAR is fitted to data simulated from the RBC model and Erceg et al. find
a good approximation to the DSGE model impulse responses to a technology shock, which is
their main interest. There are four structural shocks and four observable variables - labour
productivity lpt, the log of the consumption to income ratio cyt, the log of the investment
to income ratio iyt, and hours worked ht. The model has a unit root in technology so lpt
is stationized, yielding lpSt ≡ lpt − at. The VAR implied by the DSGE model has the exact
form18

lpSt = 1.045lpSt−1 − .04cyt−1 + .034iyt−1 − .011ht−1 (23)

cyt = .08lpSt−1 − .926cyt−1 + .039iyt−1 − .02ht−1 (24)

iyt = −.22lpSt−1 − .143cyt−1 + .875iyt−1 − .05ht−1 (25)

ht = −.173lpSt−1 + .116cyt−1 − .075iyt−1 + 1.033ht−1. (26)

So a SSVAR(1) in lpSt , cyt, iyt and ht fits exactly. Stationized labour productivity, how-
ever, is not observable; the observable-variables SSVAR is in terms of ∆lpt, cyt, iyt and ht.
Since the error-correction terms appear to be small we would expect that a SVAR(2) in
the observable variables could capture the impulse responses quite well, and any differences
would only show up in the impulse responses at long horizons. Once again the capital stock
(or services from capital) can be substituted out from the production function, and therefore
it does not appear in the core endogenous variables. Figures 12 and 13 demonstrates that a
SSVAR(2) in observable variables does indeed make a match for moderate horizons.19

The second model that Erceg et al. (2005) study has nominal rigidities, but also modifies
the production function. In particular, capital services now are the product of a utilization
rate and the capital stock kSt−1. This means that kSt−1 will be a latent core variable, whereas
in the first model it could be eliminated. Thus we have two potential sources of problems
which may prevent the VAR from giving accurate estimates of the impulse responses. The
first is that lpSt is not observable, while the second is that the capital stock is also latent.
Furthermore, another problem is that there is an additional shock - monetary policy - so
there are now five shocks in the model but only the same four observable variables as were
used for the RBC model. As the new shock is for monetary policy one might have expected
the interest rate rt to have been added to the VAR as an observable variable. The reason
this matters can be seen by comparing the labour productivity VAR equation for this model,
Equation (27), to its equivalent for the RBC variant, Equation (23)

18The shocks have been omitted from the identities for simplicity.
19Because we only work with four decimal places, and the impulse responses are small, this makes for the

jagged responses that are seen in the graph.
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Figure 12: Cumulated Response of Log of Output to a Technology Shock for SVARs Fitted
to the Erceg et al RBC Model with All and with just Observed Variables

Figure 13: Response of Log of Consumption/Output Ratio to a Labour Supply Shock for
VARs Fitted to the Erceg et al RBC Model with All and with just Observed Variables
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Figure 14: Response of Log of Consumption Output Ratio to a Domestic Technology Shock
for SVARs Fitted to Erceg et al Model Output with All, The Erceg et al Observable Variables,
and the latter Extended to Include the Interest Rate

lpSt = 1.16lpSt−1 − .34lpSt−2 + 1.17cyt−1 + .12cyt−2 − .05iyt−1

+.05iyt−2 − .2ht−1 + .17ht−2 + .0009kSt−1 − .36rt−1. (27)

The key difference is that in Equation (27) rt−1 cannot be substituted out and, since it is
unobserved, there is no longer a finite-order VAR representation in terms of the stationized
variable lpSt , even if it were observed. This is what Erceg et al. (2005) find. As before there
is also the specification error that comes from replacing lpSt with ∆lpt in the VAR. Figure 14
shows the impact of technology shocks upon the log of the consumption output ratio for the
DSGE model as well as for an SSVAR(2) fitted with and without the interest rate being
treated as an observed variable. It is apparent that much of the truncation error in the long
horizon comes from the interest rate being unobserved - for the first three years there is little
truncation error.

4 Estimating the Contemporaneous Impulse Responses

4.1 Analysis

We now turn to the second element of making a match between the models, namely the
contemporaneous responses. More precisely, we analyse how closely CSV AR

0 relates to CTM
0 .

This is a key element in determining the levels of the impulse responses and it is here that
structural information needs to be used. Put another way, it is an SVAR that has to be
estimated now rather than just a VAR. In the previous section we set the contemporaneous
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responses of the shocks equal to that for the TM. If they are not equal, then the responses
would originate at different points, even though they would retain the same shape (as that
comes from the dynamics, namely the Bj in Equation 3).

To isolate the parameter estimates of the TM which will influence the contemporaneous
responses, recall that TMs have the general form of Equation 1, which has Equation 2 as its
solution. The latter is an incomplete VAR as the process for the shocks, ut, has not been
specified. For simplicity, let us assume that the shocks are equal to their innovations, εt.
The complete VAR then is

zt = B1zt−1 + C0εt,

where B1 = D and C0 = G. So the contemporaneous impulse responses are G. Furthermore,
from the complete VAR (the reduced form) the expectations in the TM can be computed,
namely ξt = Et(zt+1) = B1zt. B1 can be obtained from the reduced-form VAR. Thus the
original representation of the TM in (1) can be re-expressed as

A0z1t = A1zt−1 + Cξt + εt. (28)

This expression treats the expectations as an extra endogenous variable. It is apparent
from this formulation that the matrix which will influence the contemporaneous responses
is A0 +C. This matrix, together with the B1 from the reduced form, determine G in the
solution to the TM.

Assessing the ability to make a match with a SVAR to the contemporaneous impulse
responses in the TM is essentially asking whether it is possible to estimate A0 + C. To do
this it will often be necessary to adopt assumptions used in the TM that are generally not
found in SVAR work. In what follows we focus on whether a match can be made given an
infinite sample of observations, thereby abstracting from problems arising from the small
size of the samples typical in macroeconomic applications. Doing so helps an understanding
of what the limits are for a SVAR approach to recover the structural shocks. A recent small
New-Keynesian model from the literature is used to illustrate the issues, namely the external
sector of the multi-sector model (MSM) of Rees et al. (2016).

Basically the question that needs to be answered is whether there are enough good in-
struments for estimating the parameters in the structural equations of the SVAR (akin to
Equation 28) which define the shocks. The SVAR will need to use information from the TM
to get these instruments and these will involve three types of restrictions.

1. Exclusion restrictions coming from the structural relations of the TM.

2. Uncorrelated shock assumptions made in the TM.

3. Common factors among the dynamics of the TM.
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4.2 Illustration: The External Sector of Rees et.al.’s Multi-Sector
Model (MSM)

This is a small New-Keynesian (NK) model of the form

yt = Et(yt+1)− (rt − Et(πt+1)) + uyt (29)

πt = βEt(πt+1) + κyt + uπt (30)

rt = ρrrt−1 + (1− ρr)(γyyt + γππt) + δ∆yt + εrt, (31)

where uyt and uπt follow AR(1) processes

uyt = ρyuyt−1 + εyt

uπt = ρπuπt−1 + επt,

with εyt, εrπ and εrt being white noise processes that are uncorrelated with each other. We
assume that πt and rt are observed. yt is actually a stationized variable, however, we will
initially abstract from that complication and think of yt as being an I(0) observable output
gap, so as to initially focus on the problems of estimating the SVAR derived C0 and matching
that of the TM. Later we return to the case where the output gap is actually ySt = yt − at,
where at is the log of technology which follows an I(1) process.20

The NK model in (29)-(31) solves to gives a VAR(1) in yt, πt and rt . Using the parameter
values in Rees et al., the SSVAR equation for πt is

πt = .108yt−1 + .269πt−1 + .123rt−1 + .0006εyt + .013επt − .009εrt.

As discussed above, this provides an expression for expected inflation, namely ξπt ≡ Etπt+1 =
.108yt + .269πt + .123rt. In large samples we can recover the expectation by regressing πt+1

on yt, πt and rt.
21

4.2.1 Using COMFAC Restrictions from the TM in the SVAR

Consider the estimation of the New-Keynesian Phillips Curve, Equation (30). It can be
converted to an equation (which has innovations as shocks) by multiplying through by a
polynomial in the lag operator (1-ρπL) to give

(1− ρπL)πt = β(1− ρπL)ξπt + κ(1− ρπL)yt + επ,t. (32)

It is evident that the coefficients on πt−1, yt−1 and ξπt−1 all involve the same parameter ρπ.
Consequently, there is a common factor (1 − ρπL) in the three separate lag polynomials.
This COMFAC structure was investigated by Hendry and Mizon (1978).

20We are also avoiding the problem that in many TMs there are unobservable variables so they would
be left out of any structural equation specified by an SVAR, and this is likely to make it harder to make a
match. Because it so context dependent we assume that all variables are observable until later when we deal
with I(1) variables, where there is only partial observability, but of a from that is not context dependent.

21With 10,000 simulated observations from the MSM we obtain .26, .11 and .12 instead of .27, .12 and
.11. Even with 200 observations the estimates are accurate; they are .24, .13 and .02.
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Now a standard SVAR equation for inflation would be

πt = a021yt + a023rt + a122πt−1 + a121yt−1 + a123rt−1 + επt. (33)

Here there are five parameters to be estimated but only three instruments yt−1, rt−1 and
πt−1. However, when COMFAC restrictions are applied this can be written as

πt = a021yt + a023rt + ρπuπt−1 + επt. (34)

Using β = 0.9996, κ = .036 and ρπ = .31 from Rees et al. (2016) we would find that the
SVAR equation implied by MSM would have coefficient values of

a021 =
(.9996× .108) + .036

1− (.269× .9996)1
= .197,

a023 =
.123

.731
= .169.

Estimating Equation (34) using simulated values from the MSM (10,000 observations) and
instruments πt−1, yt−1,rt−1 , we would get

πt = .192yt + .164rt + .31uπt−1 + επt,

which is an excellent match, enabling the recovery of the MSM shock επt.
Thinking about this from a conventional SVAR perspective for estimating C0, Equa-

tion (33) could not be estimated, and one action that is often taken is to make the system
recursive. This would require at least a023 = 0. Is this reasonable? It is true that rt is absent
from the MSM’s Phillips curve, but it should appear in the SVAR equation for inflation
because of expectations and it is that which gives a023 = .169. So the COMFAC assumption
in the MSM would need to be used to estimate the parameters.

In a similar vein the output equation in the SVAR implied by the MSM model (and
parameter values) has the form

yt = .77πt − 29.4rt + .95uyt−1. (35)

The COMFAC restriction deliver enough instruments to estimate this equation, producing

yt = .56πt − 22.33rt + .952uyt−1 + εyt,

which is a reasonable match to what the MSM model predicts this equation would be, as
seen in Equation (35).

The COMFAC restriction used in the MSM model (and TMs more generally) does not
come from the microeconomic foundations of the model. It is simply a statistical assumption
about the nature of shocks, in particular their autocorrelation, so it could be equally used
in an SVAR framework.

26



4.2.2 Other Restrictions from the TM

Because we can calculate ξπt in (32) from a VAR we might instead formulate the SVAR
equation as

πt − .9996ξπt = κyt + ρπuπ,t−1 + επ,t,

since β = .9996 is prescribed by Rees et al. (2016), rather than being estimated - a very
common approach in DSGE models. If that is done then there are two parameters to estimate
and three instruments and we would get

πt − .9996ξπt = .032yt + .31uπ,t−1 + επ,t.

This is a good match to the true values. We could add one extra regressor in to the SVAR
equation and the answers do not change much. Hence the shock επ,t can be estimated and
impulse response functions found.22 Thus we don’t need to set the parameters on all three
lags to zero.

Turning to the final equation in the MSM external system the SVAR equation for rt
implied by the MSM is

rt = .928rt−1 + .154yt − .139yt−1 + .107πt.

Now this equation could be estimated using the three available instruments yt−1, rt−1 and
πt−1. But, even with 10,000 observations, the point estimates are very bad, because rt−1 is
not a good instrument. There are no COMFAC restrictions for this equation as monetary
shocks are white noise. However, SVARs do use the assumption of TMs that the structural
shocks are uncorrelated with one another, meaning that επt and εyt can be used as extra
instruments, if they can be constructed. To do so apply the restrictions discussed above
(COMFAC plus parametric) to the SVAR inflation and output equations and compute the
residuals ε̂πt and ε̂yt. Using these as extra instruments produces

rt = .928rt−1 + .150yt − .135yt−1 + .105πt,

which agrees very closely with that implied by the MSM structural equation. When only
200 observations are used the parameter estimates become

rt = .942rt−1 + .14yt − .116yt−1 + .078πt,

which still represents a good match. Again we could allow for πt−1 to appear with little
effect.

4.2.3 Issues with I(1) Variables in TMs and SVARs

When there are I(1) variables in the TM then there must be permanent, as well as transitory,
shocks. Generally, the log level technology is a permanent shock. This mixture of shocks
poses more substantial difficulties in making a SVAR match to the C0 from the TM.

22Once a structural shock such as επ,t is found impulse responses of the k′th variable to it can be found
by regressing the VAR residuals êkt against ε̂π,t. This is because it is uncorrelated with the other shocks
and thus these can be omitted from the regression.
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One method for dealing with a mixture of shocks is that due to Shapiro and Watson
(1988). They showed that one could separate permanent and transitory shocks by work-
ing with some modified equations in the SVAR. As an example, we look at the An and
Schorfheide (2007) model, where there is a permanent shock on output from technology
while the other shocks two shocks have transitory effects. The following equation for output
growth is the Shapiro-Watson formulation and is the SSVAR identity

∆yt = −.05ySt−1 + .17∆rt + 1.58∆πt + ξt, (36)

where ξt =.0006εat− .0002εrt + .006εgt. ξt will be a permanent shock.23 The equation can be
estimated using rt−1, πt−1 and ySt−1 as instruments. This produces

∆yt = −.05ySt−1 + .15∆rt + 1.57∆πt + ξt, (37)

which is a very good match. So the permanent shock ξt can be estimated.
Now we need to have all the SVAR equation shocks being uncorrelated in order to be

able to compute impulse responses to ξt. We therefore look at the inflation equation. It
obeys the identity

πt = 1.05ySt − 1.0ySt−1 − .117rt + 1.18πt−1 + 0.0001εrt − .0063εgt

From this, it is immediately apparent that ξt will be correlated with the shock in the inflation
equation of the SVAR. When the latter equation is estimated (omitting εrt and εgt) with

ξ̂t, πt−1, y
S
t−1 and rt−1 as instruments we get

πt = .065ySt − .063ySt−1 − .13rt + .61πt−1,

which is a very poor match. This arises because of the correlation of the innovations for the
∆yt and πt SVAR equations. To see that effect suppose we used εat as the instrument in
place of ξ̂t. Then the estimated equation would be

πt = −.05ySt − 1.0ySt−1 − .12rt + 1.17πt−1,

and there is now no bias. To separate these shocks one would need to estimate the system,
not just this equation. In work such as Gali (1999) impulse responses ξt are found by this
method. But while ξt is a permanent shock it is not equal to the technology shock εat. So
it should not be surprising that the impulse responses to εat from a DSGE model may be
different to that for ξt from an SVAR.

Now the difficulties with I(1) variables are more complex than above, since we do not
observe ySt−1, only ∆yt−1. Re-estimating Equation (37) with ySt−1 replaced by ∆yt−1 gives

∆yt = −.016∆yt−1 + .20∆rt + 1.71∆πt.

In this instance the consequence for the estimates of not knowing ySt−1 does not appear to
be great.

To check this more carefully let us look at the SVAR for the Phillips curve in the MSM
above. There are now two issues. First, Et(πt+1) involves the latent variable ySt and observed

23Pagan and Pesaran (2008) extended this to handle co-integrated variables.
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expectations, ξot , generated from a VAR(2) in the observable variables alone - excludes this.
Nevertheless, ξot and Et(πt+1) have a correlation of .91. Second, we need to replace ySt with
∆yt. To assess the implications of the second factor, we constrain β to its true value, and
estimate using the observable variables as instruments, namely (πt−1− .9996ξMSM

t−1 ), {∆yt−j,
πt−j, rt−j}2j=1. This produces

πt − .9996ξMSM
t = −0.0005∆yt + 0.28uπ,t−1 + επ,t. (38)

So, even if expectations are correctly formed, there will be a bias. If we used the incorrect
expectations, based on the observed variables, we would obtain

πt − .9996ξot = −0.0006∆yt + 0.28uπ,t−1 + επ,t. (39)

These estimates are very similar to Equation (38), demonstrating the relative importance
replacing ySt with ∆yt. Finally, using ySt we obtain

πt − .9996ξot = −0.01ySt + 0.26uπ,t−1 + επ,t. (40)

4.3 Implications

The analysis and illustration shows the difficulties that a SVAR can experience in capturing
the C0 from a DSGE model often stem from the fact that the traditional estimation of
SVAR models seeks to avoid imposing statistical restrictions (such as COMFAC), exclusion
restrictions (in the interest rate equation πt−1 does not appear), and other constraints where
coefficients are prescribed (for example on Et(yt+1) in the output equation).

In many ways SVARs are about assembling information concerning the dynamics and
contemporaneous interactions between variables in the macroeconomy in such a way which,
while identified, impose less structure than is included in DSGE models. Traditionally this
flexibility has been achieved by using exactly-identified SVARs rather than the over-identified
structural equations of the DSGE approach. There are, of course, common restrictions be-
tween the two approaches, such as the assumption that the structural shocks are uncorre-
lated.24 Alternatively, a criticism of the SVAR approach may be that some of the restrictions
frequently used, such as making the system recursive, are driven by convenience, rather than
being based on good institutional or economic information.

5 Conclusion

This paper has examined what influences the ability of a SVAR to make a match with the
impulse responses of economy-wide models, such as DSGE models. As the latter typically in-
clude variables that are not observed in estimation, we have looked at when these unobserved
variables can be expressed as a function of the observable variables. Provided the weights on
the higher-order lags of the observable variables are low it may be possible to approximate
the responses well with a finite-order VAR, which was demonstrated by a simple RBC model.

24Note, however, that as DSGE models are often over-identified the estimated structural shocks will not
necessarily be uncorrelated - see Liu et al 2018.
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Stock variables, which are typically included as latent variables in DSGE models but are not
included in SVAR models, emerged as a potentially important factor influence the extent
of truncation bias. A small-open economy model showed that the omission of the stock of
foreign debt from a VAR could result in truncation biases for real shocks, although even
then this was an issue only at longer horizon responses.

DSGE models today often include permanent shocks, such as technology. It was found
that in these models truncation biases potentially came from a misspecification. The actual
generating process is a latent-factor VECM and not a VAR in terms of observed quantities
such as the growth in I(1) variables. Such a model often is relatively easy to estimate and can
be implemented so as to safeguard against truncation bias, although in the models studied
even a relatively low-order SVAR could overcome this. Nevertheless, such a strategy does
not overcome the potential problems that arise from the omission of the stock variables.

Analysis of the well-known Smets Wouters (2007) model found that the major source of
the truncation problem was the assumption that the interest rate rule depended on the flex-
price output gap and related terms. While theoretically appealing, frequently in applied work
log-linearized output and output growth are used instead. Modifying the interest rate in that
way mitigated much of the truncation bias. In all, it appears that the extent of truncation
bias, while model dependent, often is not substantial and can lessened by strategies such as
working with a latent-factor VECM and careful choice of the observed variables.

The second dimension to making a match is how well the SVAR can capture the initial
impulse responses rather than the dynamics. It was shown some of the identification in
DSGE models is from COMFAC restrictions which are statistical, rather than economic,
in nature. Using these, together with other information from the DSGE model, such as
exclusion restrictions, may well make a close match between the contemporaneous impulse
responses possible. Such restrictions, however, are not commonly adopted in the SVAR
literature. Adopting the strong identifying assumptions included in DSGE models would take
away a key attractive feature of the SVAR approach, which is the use of as few assumptions
as possible in order to produce data-based evidence on the behaviour of the macroeconomy.
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